A generic PBPK model for predicting the impact of inflammation on midazolam pharmacokinetics

Florian Simon1, Marylode Chenel2, Léa Payen3, Michel Tod4
1EA3738, Faculté de médecine de Lyon-Sud, Université de Lyon 1, Oullins, France,
2Institut de recherches internationales Servier, Direction of clinical PK and pharmacometrics, Suresnes, France,
3Laboratoire de biochimie-toxicologie, Centre hospitalier Lyon-Sud, Hospices civils de Lyon, Pierre Bénite, France

Introduction

Systemic inflammation is known to impact drugs pharmacokinetics (PK) :
• IL-6 binding to its membrane receptor activates different signaling pathways modifying activity of nuclear receptors involved in drug-metabolizing enzymes (DME) and drug-transportsers synthesis [1].
• In vitro tests have studied the impact of some cytokines exposure on hepatic, intestinal and blood-brain barrier cell lines. They reveal alterations of expression levels and activities of DMEs, drug-transportsers and plasma proteins [1, 2, 3].
• Clinical studies have also highlighted significant differences of PK profiles between patients with high and low systemic inflammation level [4].

These modifications could have clinical consequences and require dosing rate adaptations.

Aims

The aim of this work was to build a physiologically-based PK (PBPK) model to predict the impact of inflammation on drug PK. Since CYP3A4, one of the major DME, is strongly impacted by inflammation, midazolam was chosen as a probe for this study.

Data & Methods

In a previous study, we conducted RNA sequencing and activity tests on intestine and BBB cell lines to select which DME and ABC transporters are the most impacted by inflammation.

Model building

Midazolam PBPK model was built using PK-sim 7.4 and its library. The inflammation model was calibrated using midazolam PK profiles after continuous infusion at four levels of CRP (10, 32, 100 and 300 mg/L) in a population of 83 critically ill children [5].

The relationship between CRP concentrations and CYP3A4 metabolic clearance was studied using midazolam PK profiles after continuous infusion at four levels of CRP (10, 32, 100 and 300 mg/L) in a population of 83 critically ill children [5].

The inflammation model was calibrated using midazolam PK profiles after continuous infusion at four levels of CRP (10, 32, 100 and 300 mg/L) in a population of 83 critically ill children [5].

Model validation

The model was externally validated using visual predictive check (VPC). The data of 12 rheumatoid arthritis patients taking 0.03mg/kg midazolam (oral route), before and after administration of sirukumab (an anti-IL-6 monoclonal antibody) [6] were compared to simulations for N = 1000 patients performed with PK-sim for different CRP concentrations (0.5 and 25.3 mg/L).

Results

A) Building inflammation-metabolism correlation using simulations from critically ill children (N=83) [5]

Severity of inflammation was related to CYP3A4 metabolic activity by including a factor, kcrp, on midazolam-metabolite formation rate equation :

\[
\frac{d[M]}{dt} = k_{cat} \cdot \frac{[M]}{K_m} - k_{crp} \cdot V_{max}/[CYP3A4]
\]

Estimation of kcrp for each midazolam PK profile :

\[k_{crp} = 0.2 + 0.8 \cdot e^{\frac{CRP}{25}} \]

B) Model validation using PK data from rheumatoid arthritis patients (N=12) before (CRP = 25.3 mg/L) and after (CRP = 0.5 mg/L) tocilizumab treatment [6]

Conclusion

• Midazolam PK could be predicted depending on the level of CRP.
• This model allows to adapt dosing rate of CYP3A4 substrates and to avoid toxicities in case of high inflammatory response.
• This approach will be extended to other substrates of DMEs impacted by inflammatory response and to drugs with high protein binding in plasma.
• Effect of inflammation on drug-drug interactions will also be studied.

REFERENCES