Model based optimization of dose-finding studies for drug-combinations

Theodoros Papathanasiou^{1,2}, Anders Strathe², Rune V. Overgaard², Trine M. Lund¹, Andrew C. Hooker³

Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
Novo Nordisk A/S, Quantitative Clinical Pharmacology, Søborg, Denmark
Department of Pharmaceutical Biosciences, Uppsala University, Sweden

13/06/2019

Background Combination pharmacotherapy

- Simultaneous administration of more than one drugs may
 - Enhance the efficiency of pharmacotherapy¹
 - Higher effect compared to the two mono-components alone
 - Lead to decreased side-effects¹
 - Smaller needed doses for each drug
- Used in various medical fields
 - Metabolic disease (Diabetes, Obesity)
 - Cancer
 - Infectious disease
 - Circulatory system disorders (Hypertension, Atherosclerosis)
 - Anaesthesiology

Background Dose selection in clinical drug development

- Even for single drugs, *dose selection* is one of the most challenging steps in drug development^{1,2}
 - Poor dose selection is still an important cause of the high attrition rate in confirmatory trials^{1,2}
- Accurate delineation of the Dose– Exposure–Response (DER) relationship is a key aspect for rational dose selection^{1,2}

3

2. Report from Dose Finding Workshop European Medicines Agency, London, 04 - 05 December 2014

Background Dose selection in drug combinations

• Dose selection for single drugs is a singledimensional problem

4

Background Dose selection in drug combinations

- Dose selection for single drugs is a singledimensional problem
- For drug combinations, there is an additional level of complexity
 - Many potential doses to explore
 - Complex Dose-Exposure-Response relationships
 - Especially when pharmacodynamic interactions are present
- Drug development challenge
 - Which combination doses should be explored in a dose-finding setting to
 - Maximize the collected information
 - Increase the probability to select a promising dose to bring forward to confirmatory trials

5

6

Aim

- Evaluate the added benefit of using **Optimal Design** for guiding the allocation of studied combination doses in a dose-finding setting
- Compare the optimized designs to a typical drug-combination dose-finding design in terms of probability to identify the most promising combination dose to bring forward to confirmatory trials

Drug characteristics and pharmacodynamic endpoint

- Two hypothetical compounds
 - Drug A: Well-established E-R relationship and approved dose
 - Drug B: Novel add-on, with unknown E-R relationship
 - Drugs administered as a 'loose' combination
 - Any combination dose could be considered
- Pharmacodynamic endpoint:
 - % change from baseline
 - Can be applied to any continuous clinical response endpoint
- Analysis method:
 - End-of-study, cross-sectional Exposure-Response (E-R) analysis

Methods Drug exposure

- Pharmacokinetic (PK) assumptions:
 - Population PK models for both drugs developed prior to the E-R analysis
 - No PK interactions between the two drugs
 - Average steady state concentration (C_{ss}, ng/mL) following repeated dosing
 - Assuming standard linear pharmacokinetics for both drugs

$$C_{ss,x}(Dose_x) = \frac{Dose_x \cdot F_x}{CL_{x,i} \cdot \tau} \qquad CL_{x,i} = \theta_x e^{\eta_{x,i}} \qquad \eta_{x,i} \sim N(0, \omega_x^2)$$

CL: Drug clearance

F: Bioavailability

τ: Dosing interval

The apparent clearance (CL/F) and dosing interval for both drugs were considered to be equal (CL/F=10 L/h and τ =24h) The variability in clearance was assumed to be log-normally distributed with standard deviation 25%

8

Combination Dose-Exposure-Response model

Model for empirical description of pharmacodynamic interaction data. Not **indented** for identification of deviation from additivity

9

Combination Dose-Exposure-Response model

$$E = E_0$$

Model for empirical description of pharmacodynamic interaction data. Not indented for identification of deviation from additivity

Combination Dose-Exposure-Response model

$$E_A = \frac{E_{max,A} \cdot C_{ss,A}^{\gamma_A}}{EC_{50,A}^{\gamma_A} + C_{ss,A}^{\gamma_A}}$$
$$E = E_0 + E_A$$

Model for empirical description of pharmacodynamic interaction data. Not indented for identification of deviation from additivity

Combination Dose-Exposure-Response model

$$E_{A} = \frac{E_{max,A} \cdot C_{ss,A}^{\gamma_{A}}}{EC_{50,A}^{\gamma_{A}} + C_{ss,A}^{\gamma_{A}}} \qquad E_{B} = \frac{E_{max,B} \cdot C_{ss,B}^{\gamma_{B}}}{EC_{50,B}^{\gamma_{B}} + C_{ss,B}^{\gamma_{B}}}$$
$$E = E_{0} + E_{A} + E_{B}$$

Model for empirical description of pharmacodynamic interaction data. Not intended for identification of deviation from additivity

Combination Dose-Exposure-Response model

Model for empirical description of pharmacodynamic interaction data. Not intended for identification of deviation from additivity

Combination Dose-Exposure-Response model

Model for empirical description of pharmacodynamic interaction data. Not intended for identification of deviation from additivity

novo nordis

Methods Reference design (3x3 factorial)

- Most comprehensive design found in the literature¹
 - Simple construction
 - Ignores potential differences in the information in the design space
- N_{trial}=540 subjects (60 subjects per arm)
 - Power calculation using a two-sided t-test
 - Reflects the most common method for obtaining the sample size in dose finding trials
 - Powered to detect a Δ =5% from placebo

Level of variance: 6% sd. 95% power. 95% significance level of a = 0.05

1. Nøhr-Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, et al. Body of evidence and approaches applied in the clinical development program of fixed-dose combinations in the European Union from 2010-2016. Br J Clin Pharmacol. 2019

Methods Design optimizations

- Design optimizations was performed with respect to dose allocation.
 - Monotherapy and combination doses were allowed to vary.
 - Optimizations initiated from the reference design.
 - Search grid from **0 to 10 mg** with 0.1 mg resolution
 - Maximum combination dose based on safety information from phase I
- Drug A parameters were kept fixed
 - Most common situation in clinical drug development for drug combinations¹
- E₀ assumed to be of little interest
 - Ds optimization family
- PopED was used for the evaluation and optimization of all designs²

- . Nøhr-Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, et al. Body of evidence and approaches applied in the clinical development program of fixed-dose combinations in the European Union from 2010-2016. Br J Clin Pharmacol. 2019
- 2. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Programs Biomed. 2012;108(2):789-805.

Results Reference design (3x3 factorial)

- Evaluation of reference design
 - Low expected overall parameter precision¹
 - Very little information on $\text{EC}_{\text{50,B}}$ and the interaction parameter α

Parameter Precision (RSE (%))

Parameter	Value	Factorial 14.9			
E ₀ (%)	3				
E _{max,B} (%)	4.5	42.4			
EC _{50,B} (ng/mL)	20	95.8			
a (unitless)	0.15	50.7			
Average RSE (%)	021	51			
Ds-Efficiency (%)	10	100			

FIM (Fisher Information Matrix) predicted RSEs(%)

N/Arm: Number of subjects per arm

1. Papathanasiou, T., Strathe, A., & Hooker, A. C. (2018). Feasibility of Exposure-Response Analyses for Clinical Dose-Ranging Studies of Drug Combinations

Results Ds-Optimal design

- 41% gain in Ds-efficiency
 - Same information content with reference with as little as **324** subjects
- Simpler than reference design
 - Four arms were shown to be adequate for parameter estimation

Parameter	Value	Factorial	Ds-Optimal				
E ₀ (%)	3	14.9		14.9			
E _{max,B} (%)	4.5	42.4		28.1			
EC _{50,B} (ng/mL)	20	95.8		66.8			
a (unitless)	0.15	50.7		45.2			
Average RSE (%)	())	51		38.8			
Ds-Efficiency (%)		100		141.2			

Parameter Precision (DSF (0%))

FIM (Fisher Information Matrix) predicted RSEs(%)

N/Arm: Number of subjects per arm

Same weights across trials (i.e. N/arm) for all doses: N = 60/arm. Some arms are replicates

Results Ds-Optimal design – model predictions

- Performing clinical trials simply to obtain accurate parameters estimates is somewhat implausible
- Dose-finding trials objective
 - Maximize the confidence of doseselection for confirmatory trials
 - Minimize the prediction variance around a desired (pre-specified) effect level
- D-optimal designs
 - Maximize information in the parameter space
 - Potentially suboptimal for predictions at a desired effect level

Results Compound Ds/V-Optimal design

- V-Optimal designs
 - Focus on minimizing the model prediction variance over a range of concentration of drug A and drug B¹
- Advantages
 - Very good prediction for a wanted area of the E-R curve
- Disadvantages
 - Very imprecise parameter estimates (expected)¹
 - Implausible clinical trial design
- Solution: A combination of Ds and V
 - Equal contribution of Ds- and V-optimality criteria

 $Ds/V(\xi) = \kappa \cdot \log Eff_{Ds}(\xi) + (1-\kappa) \cdot \log Eff_V(\xi)$

 ξ : Design variable Eff_D : D-efficiency Eff_V : V-efficiency κ : integer ($0 \le \kappa \le 1$) Controls how much each design criterion influences the final design

1. Miller F, Guilbaud O, Dette H. Optimal designs for estimating the interesting part of a dose-effect curve. J Biopharm Stat. 2007;17(6):1097-115

Results Scenario for correct dose identification

Scenario for correct dose identification

- Target effect: $\Delta_{Target} = 10\%$
 - 3% CFB for placebo
 - Dark blue line represent the true 13% (10%+3%) isobole

Scenario for correct dose identification

- Target effect: $\Delta_{\text{Target}} = 10\%$
 - 3% CFB for placebo
 - Dark blue line represent the true 13% (10%+3%) isobole
- Optimal dose-combination for target effect
 - Light blue dot: the smallest combination of both drugs leading to the target effect

Scenario for correct dose identification

- Target effect: $\Delta_{\text{Target}} = 10\%$
 - 3% CFB for placebo
 - Dark blue line represent the true 13% (10%+3%) isobole
- Optimal dose-combination for target effect
 - Light blue dot: the smallest combination of both drugs leading to the target effect
- Square represents the area over which the integration for the Ds/V-Optimality criterion was performed
 - Square around the optimal dose-combination with a length of each side L=15 ng/mL (chosen arbitrarily)

Results Compound Ds/V-Optimal design

- Ds-efficiency
 - Some loss when compared to the Ds-optimal design
 - More Ds-efficient than the reference design
- Dose allocation
 - Four arms were shown to be adequate
 - Less clustering around placebo

	Parameter Precision (RSE (%))						
Parameter	Value	Factorial	Ds	Ds-Optimal		Ds/V-Optim	
E ₀ (%)	3	14.9		14.9	-	25.8	
E _{max,B} (%)	4.5	42.4		28.1		34	
EC _{50,B} (ng/mL)	20	95.8		66.8		60.8	
a (unitless)	0.15	50.7	\bigtriangleup	45.2	$\mathbf{\nabla}$	61.4	
Average RSE (%)	0.0	51	\bigtriangleup	38.8		45.5	
Ds-Efficiency (%)		100	\bigtriangleup	141.2		107.5	

FIM (Fisher Information Matrix) predicted RSEs(%)

N/Arm: Number of subjects per arm

Same weights across trials (i.e. N/arm) for all doses: N = 60/arm. Some arms are replicates

Results Surface 95% Confidence Intervals around target effect

Model 95% CIs calculation was based on the Delta method

Results Surface 95% Confidence Intervals around target effect

• Little gain in prediction certainty for the Ds-optimal design

Model 95% CIs calculation was based on the Delta method

Results Surface 95% Confidence Intervals around target effect

- Little gain in prediction certainty for the Ds-optimal design
- Ds/V-optimal design lead to the highest prediction certainty around the target effect

Reference design (Factorial)

Results

EDs-optimal design

- For nonlinear models, designs are optimal only for the evaluated parameter vector¹
 - Design with uncertainty in parameter space
 - Uncertainty around **all** parameters
- Similar efficiency as compared to the reference
 - More generalizable design
 - Fewer arms as compared to the reference

Parameter	Value	Distribution	Factorial	D	Ds-Optimal		EDs-Optimal		
E ₀ (%)	3	U(2.5, 3.5)	14.9		14.9	-	18.3		
E _{max,B} (%)	4.5	U(3, 9)	42.4		28.1		33.9		
EC _{50,B} (ng/mL)	20	U(5, 35)	95.8		66.8		82		
a (unitless)	0.15	U(-0.075, 0.175)	50.7		45.2	-	64.9		
Average RSE (%)	-		51		38.8		49.8		
Ds-Efficiency (%)	5		100		141.2	-	98.7		

Parameter Precision (RSE (%))

FIM (Fisher Information Matrix) predicted RSEs(%)

N/Arm: Number of subjects per arm

Same weights across trials (i.e. N/arm) for all doses: N = 60/arm. Some arms are replicates

1. Dodds et al., Robust Population Pharmacokinetic Experiment Design. Journal of Pharmacokinetics and Pharmacodynamics, 2005.

Probabilities for correct dose identification

- Stochastic Simulation and Estimation (SSE) was performed based on the reference and optimized designs
 - 1000 SSE replicates
 - Probabilities that the estimated combination doses are within 20% of the true ones

-Factorial (Reference)

Probabilities for correct dose identification

- Stochastic Simulation and Estimation (SSE) was performed based on the reference and optimized designs
 - 1000 SSE replicates
 - Probabilities that the estimated combination doses are within 20% of the true ones
- Optimized designs consistently led to higher probability of correct dose-identification

Reference design (Factorial)

Drug A Dose (mg)

10.0

50

2.5

0.0

Drug B Dose (mg)

Probabilities for correct dose identification

- Stochastic Simulation and Estimation (SSE) was performed based on the reference and optimized designs
 - 1000 SSE replicates

10.0

0.0

Drug B Dose (mg)

- Probabilities that the estimated combination doses are within 20% of the true ones
- Optimized designs consistently led to higher probability of correct dose-identification
- Best performance is seen using the Ds/V design

Ds-Optimal design

Drug A Dose (mg)

EDs-Optimal design

0

Drug A Dose (mg)

10.0 -

5.0

0.0

Drug B Dose (mg)

10.0

5.0

2.5

0.0

Drug B Dose (mg)

Conclusions and perspectives

- Optimized studies
 - Significantly improved the extracted amount of information
 - Allowed for higher confidence in decision making
 - Required smaller number of arms
- Compound D/V-criterion designs are a promising way forward for dose finding in combination therapy studies
- Future research should focus on
 - Expanding the methodology to include safety signals
 - Exploring the influence of uncertainty in the combination model structure

Acknowledgements

• The Pharmacometrics Group, Uppsala University

• The Pharmacometrics group, University of Copenhagen

• Quantitative Clinical Pharmacology, Novo Nordisk A/S

This work was supported by the Innovation Foundation Denmark

34