Mechanism-based modelling of gastric emptying and bile release in response to caloric intake

Benjamin Guiastrennec¹, David P. Sonne²,³, Oskar Alskär¹, Morten Hansen²,³, Jonatan I. Bagger²,³, Asger Lund²,³, Jens F. Rehfeld⁴, Mats O. Karlsson¹, Tina Vilsbøll², Filip K. Knop²,³, Martin Bergstrand¹

¹ Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
² Diabetes Research Division, Department of Medicine, Gentofte Hospital, Hellerup, Denmark
³ Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
⁴ Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
• Majority of drugs administered orally
 – Convenient
 – Flexible
• However
 – Gastrointestinal system complex and not entirely understood
 – Increasing number of poorly soluble drugs*
 o Increased receptor-ligand affinity
 \textit{(i.e. potency)}
 o Associated with highly variable absorption profiles
 o Absorption affected by intestinal secretions
 \textit{(e.g. bile)}

*Biopharmaceutics Classification System (BCS) class II and IV

Williams et al., Pharmacol Rev. (2013)
Objectives

1. Establish mechanism-based models for:
 a. Gastric emptying (GE)
 b. Plasma cholecystokinin (CCK) levels
 c. Bile flow patterns to the duodenum

2. Characterize the influence of caloric intake on different system components

3. Explore the effect of Type 2 Diabetes Mellitus (T2DM)
Study design and data

Methods

Total 66 subjects

Water study[^1]
- 10 T2DM / 10 HV
- Water
 - 100mL of water (0 kcal)

Glucose study[^2]
- 8 T2DM / 8 HV
- OGGT 25g
 - 25 g of glucose in 300mL water (97 kcal)
- OGGT 75g
 - 75 g of glucose in 300mL water (290 kcal)
- OGGT 125g
 - 125 g of glucose in 300mL water (484 kcal)

Liquid meals study[^3]
- 15 T2DM / 15 HV
- OGGT 75g
 - 75 g of glucose in 350mL water (290 kcal)
- Low fat liquid meal
 - 2.5 g fat, 13 g prot., 107 g carb.
 - Volume of 350mL (500 kcal)
- Medium fat liquid meal
 - 10 g fat, 11 g prot., 93 g carb.
 - Volume of 350mL (500 kcal)
- High fat liquid meal
 - 40 g fat, 3 g prot., 32 g carb.
 - Volume of 350mL (500 kcal)

+ Gastric emptying marker
 - (dissolved paracetamol 1.5 g)

[^1]: Hansen et al., ClinicalTrials.gov identifier NCT01666223
[^2]: Bagger et al., JCEM. (2011)
[^3]: Sonne. et al., ADA 73 (2013)
System overview

Methods

Gastric emptying model

- **Paracetamol stomach**
 - Dose: Paracetamol
 - Paracetamol duodenum
 - Paracetamol central V_c
 - Q
 - Paracetamol peripheral V_p
 - K_B

- **Glucose stomach**
 - Dose: Glucose
 - Glucose duodenum
 - K_DJ
 - CL

- **Meal volume stomach**
 - Meal Volume

- **Signal nutrients stomach**
 - Signal nutrients duodenum
 - K_DJ
 - K_JI

Cholecystokinin model

- **Pool CCK_{Fast}**
 - R_{IN}
 - R_{out}
 - K_{out_F}

- **Blood CCK_{Fast}**
 - R_{out}

- **Pool CCK_{Slow}**
 - K_{R_S}
 - K_{out_S}

- **Blood CCK_{Slow}**
 - K_{R_S}
 - K_{out_S}

Bile release model

- **Bile in duodenum**
 - $B_{release}$
 - K_{R_B}

- **Gallbladder volume**
 - R_{PROD}

Gastric emptying (GE) model

Methods

Key equations

\[K_G = K_{Go} \times \left(1 - \frac{A_{glucD}^\gamma}{I_{50}^\gamma + A_{glucD}^\gamma} \right) \]

\[K_{DJ} = \frac{1}{MRT_{glucD}} = \frac{V_{Duodenum}}{Rate_{GE}} \]
Cholecystokinin (CCK) model

Methods

Key equations

\[
\text{Signal Nutrients} = \frac{\text{mass}_{\text{fat}} \times \text{potency}_{\text{fat}}}{\frac{\text{mass}_{\text{carb}} \times \text{potency}_{\text{carb}}}{}}
\]

Bile release model

Methods

Key equations

\[
B_{\text{release}} = 1 + \frac{S_{\text{MAX}_B} \times CCK_{\text{Fast}}}{SC_{50} + CCK_{\text{Fast}}}
\]

Gastric emptying (GE) model VPCs

Results
Gastric emptying (GE) model VPCs

Results

Feedback similar to 115g of glucose
Feedback similar to 107g of glucose
Feedback similar to 107g of glucose

Water (100 mL) Glucose 25g in 300mL of water Glucose 75g in 300/350mL of water Glucose 125g in 300mL of water

Low fat liquid meal (350 mL) Medium fat liquid meal (350 mL) High fat liquid meal (350 mL)

Observations
Median of the obs.
5th and 95th percentiles of the obs.
95% CI for the pred. 5th/95th percentiles
95% CI for the pred. median
Cholecystokinin (CCK) model VPCs

Results

<table>
<thead>
<tr>
<th>Meal Type</th>
<th>CCK Plasma Levels (pmol/L)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose 75g in 350mL of water</td>
<td>0-15</td>
<td>0-200</td>
</tr>
<tr>
<td>Low fat liquid meal (350 mL)</td>
<td>0-15</td>
<td>0-200</td>
</tr>
<tr>
<td>Medium fat liquid meal (350 mL)</td>
<td>0-15</td>
<td>0-200</td>
</tr>
<tr>
<td>High fat liquid meal (350 mL)</td>
<td>0-15</td>
<td>0-200</td>
</tr>
</tbody>
</table>

- Observations
- Median of the obs.
- 5th and 95th percentiles of the obs.
- 95% CI for the pred. 5th/95th percentiles
- 95% CI for the pred. median
Bile release model VPCs

Results

<table>
<thead>
<tr>
<th>Gallbladder volume (mL)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose 75g in 350mL of water</td>
<td>0 20 40 60</td>
</tr>
<tr>
<td>Low fat liquid meal (350 mL)</td>
<td>0 20 40 60</td>
</tr>
<tr>
<td>Medium fat liquid meal (350 mL)</td>
<td>0 20 40 60</td>
</tr>
<tr>
<td>High fat liquid meal (350 mL)</td>
<td>0 20 40 60</td>
</tr>
</tbody>
</table>

- Observations
- Median of the obs.
- 5th and 95th percentiles of the obs.
- 95% CI for the pred. 5th/95th percentiles
- 95% CI for the pred. median
Final bile release model

Results

Gastric emptying model

- **Paracetamol stomach**: K_G
- **Paracetamol duodenum**: K_a
- **Paracetamol central V_c**: Q
- **Paracetamol peripheral V_p**: CL

Signal Nutrients stomach

Signal Nutrients duodenum

Meal volume stomach

Dose Paracetamol

Dose Glucose

Meal Volume

Signal Nutrients

Key equations

\[Signal\; Nutrients = mass_{fat} \times \text{potency}_{fat} + mass_{prot} \times \text{potency}_{prot} + mass_{carb} \times \text{potency}_{carb} \]

\[B_{release} = 1 + SLP_{release} \times A_{NutriD} \]

Final bile release model VPCs

Results

<table>
<thead>
<tr>
<th>Glucose 75g in 350mL of water</th>
<th>Low fat liquid meal (350 mL)</th>
<th>Medium fat liquid meal (350 mL)</th>
<th>High fat liquid meal (350 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder volume (mL)</td>
<td>Time (min)</td>
<td>Time (min)</td>
<td>Time (min)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

- Observations
- Median of the obs.
- 5th and 95th percentiles of the obs.
- 95% CI for the pred. 5th/95th percentiles
- 95% CI for the pred. median
Gastric emptying model predictions

Results

Simulated rate of GE following different caloric intakes (typical individual)

\[K_G = K_{G_0} \times \left(1 - \frac{A_{glucD}^\gamma}{I_{50}^\gamma + A_{glucD}^\gamma} \right) \]

with:
- Half-life of \(K_{G_0} \): 5.3 min
- \(I_{50} \): 4.9 gluc. gram equivalent
- \(\gamma \): 4.8

<table>
<thead>
<tr>
<th>Meal (g of glucose)</th>
<th>Time to 50% emptying</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.3 min</td>
</tr>
<tr>
<td>25</td>
<td>8.0 min</td>
</tr>
<tr>
<td>75</td>
<td>44 min</td>
</tr>
<tr>
<td>125</td>
<td>86 min</td>
</tr>
</tbody>
</table>

Assuming a meal volume of 300mL
Results

Simulated rate of gastric emptying following different caloric intakes (HV vs. T2DM)

\[K_G = K_{G0} \times \left(1 - \frac{A_{glucD}^\gamma}{I_{50}^\gamma + A_{glucD}^\gamma} \right) \]

with:
- Half-life of \(K_{G0} \): 5.3 min
- \(I_{50} \): 4.9 gluc. gram equivalent
- \(\gamma \): 4.8
- T2DM on \(I_{50} \): +29%

<table>
<thead>
<tr>
<th>Meal (g of glucose)</th>
<th>Time to 50% emptying (HV)</th>
<th>Time difference (T2DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.3 min</td>
<td>0 min</td>
</tr>
<tr>
<td>25</td>
<td>8.0 min</td>
<td>-3 min</td>
</tr>
<tr>
<td>75</td>
<td>44 min</td>
<td>-10 min</td>
</tr>
<tr>
<td>125</td>
<td>86 min</td>
<td>-14 min</td>
</tr>
</tbody>
</table>

T2DM: Type 2 Diabetes Mellitus
HV: Healthy Volunteers (matched on BMI, gender, age)
Bile release model predictions

Results

Assuming a meal volume of 300mL and the same gastric emptying rate
T2DM effects on bile release

Results

Signal Nutrients = \(\text{mass}_{fat} \times \text{potency}_{fat} + \text{mass}_{prot} \times \text{potency}_{prot} + \text{mass}_{carb} \times \text{potency}_{carb} \)

with:
- \(\text{potency}_{fat} \) = 1.0 fixed
- \(\text{potency}_{prot} \) = 1.1
- \(\text{potency}_{carb} \) = 0.028

T2DM on \(\text{potency}_{carb} \) = +12%

Simulated gallbladder emptying following different caloric intakes (HV vs. T2DM)

Subject
- HV
- T2DM

Meal
- 50 g of glucose
- 50 g of protein
- 50 g of fat
- 10 g fat/11 g prot/93 g carb

T2DM: Type 2 Diabetes Mellitus

HV: Healthy Volunteers (*matched on BMI, gender, age*)
Conclusions

• Gastric emptying was found to be controlled by a feedback mechanism of caloric content in duodenum

• CCK kinetics was not sufficient on its own to describe bile release

• An alternative approach connecting the bile release to nutrients in duodenum was preferred

• T2DM was found to affect gastric emptying and bile release through changes in sensitivity to carbohydrates

• The final model demonstrated to be predictive of gastric emptying, plasma CCK levels and bile release across a wide range of liquid meals
Future Directions

• Use new data to correlate gallbladder volume to bile concentration in duodenum and study recirculation of bile acids

• Explore correlation between plasma biomarkers and bile acid concentration in duodenum

• Integrate findings in systems pharmacology models (PBPK) to improve prediction of oral absorption
The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (http://www.imi.europa.eu) under Grant Agreement No. 115369, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.