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Tuberculosis remains a major burden

WHO GLOBAL TB REPORT 2016

Actions and investments to End TB fall far short
Current first-line treatment: Tuberculosis among top 10 causes of death worldwide last year

Here are the statistics from 2015

Rifampicin, isoniazid pyrazinamide
and ethambutol (2 months) +
rifampicin and isoniazid (4 months)

10.4 million people 1.8 million people

FELL ILL FROM TB DIED FROM TB
including 400,000

WITH HIV - TB

Long, complicated and toxic

Need to replace with shorter
reg imens That's 28,500 people every day
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Recent Phase 3 trials iIn TB

OPEN & ACCESS Freely available online @-PLOS |one

Randomized Clinical Trial of Thrice-Weekly 4-Month A” Shorter regimens

Moxifloxacin or Gatifloxacin Containing Regimens in the

Treatment of New Sputum Positive Pulmonary were inferior {0 the
Mohideen S. Jawahar'¥, Vaithilingam V.

Tuberculosis Patients | JE——— ” .
Rajeswari Ramachandran’, Perumal Ver Stan d ard Of Care reg I m e n
Chinnaiyan ponnursia’, alaudesn 5.1 A Four-Month Gatifloxacin-Containing

::dhaG;:ap.athy‘,1;Ianaja Kumalr‘l,lg;.;i Regimen for Treating TUberCUIOSIS
Kannivelu Jagannath®, Chockalingam C|
Paranji R. Narayanan’ Corinne S. v
Martin G “ ORIGINAL ARTICLE ”
Joseph OdI
Ferdinand Ka . . . . . .
saukeC ceJo High-Dose Rifapentine with Moxifloxacin
Cha R — .
Piero L. for Pulmonary Tuberculosis
ror A
Pal
i The NEW ENGLAND
Si
sa JOURNAL o MEDICINE
Ja.Wa.ha.r et a-l, 2013 ESTABLISHED IN 1812 OCTOBER 23, 2014 VOL. 371 NO. 17

Merle et al, 2014
Jindani et al, 2014
Gillespie et al, 2014

Four-Month Moxifloxacin-Based Regimens
for Drug-Sensitive Tuberculosis

Stephen H. Gillespie, M.D., D.Sc., Angela M. Crook, Ph.D., Timothy D. McHugh, Ph.D., Carl M. Mendel, M.D.,
Sarah K. Meredith, M.B., B.S., Stephen R. Murray, M.D., Ph.D., Frances Pappas, M.A., Patrick P.J. Phillips, Ph.D., 3
and Andrew |. Nunn, M.Sc., for the REMoxTB Consortium®



Recent Phase 3 trials iIn TB

(O TB ALLIANCE

Global Phase 3 “STAND" Trial Launched to 1&g <5,
Drug Regimen PaMZ to Shorten, Improve Treatment ‘

areh 17 2015 Pretomanid-Moxifloxacin-Pyrazinamide

I\)J TB ALLIANCE ABOUT  WHY NEW TBDRUGS? R&D  ACCESS  CHILD SURVIVAL  NEWS - Q

Clinical Trial of BPaMZ Regimen Will Replace Phase 3 STAND

Trial Bedaquiline + Pretomanid-Moxifloxacin-Pyrazinamide

STAND trial will not re-open patient enrollment

December 16,2016



Background

Situation
Development of novel drug combinations in tuberculosis remains challenging.

Target
More effective use of preclinical data to inform selection of dose and drug
combinations prior to clinical development.

Proposal

PKPD modelling for integration of preclinical data arising from different
experimental protocols.




Research objectives

1. Demonstrate how NLME approach can be used to integrate in vivo
PKPD data arising from different experimental protocols.

2. Develop a parametric approach to describe the effect of
combination treatments on the parameters of interest.

3. Evaluation of different scaling methods for selection of dose and
drug combinations in clinical development.



Preclinical stage
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Next challenge: systematic data evaluation

Factorial design to assess drug
combinations?

Problems:
1. Large datasets
2. Complex to analyse

3. Results may still not be
necessarily translatable to
human
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How to separate the good from the bad?




Approach: integrated PKPD modelling

Mean generation rate (knet) Potency (IC50) Drug interactions in each
Carrying capacity (BMAX) Maximum killing rate (Emax) combination
- PKPD PKPD
= 3 . .
W Disease :> (backbone drug) :> (drug combinations)

C Rl 2 C

External validation

PKPD PKPD
(backbone drug) (drug combinations)
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Key assumptions in analysis

In vivo
Literature meta-analysis (CFU only)
Simulations (VPCs) performed without inter-individual variability
PK assumed to be constant across experiments

Human
Individual patient data available (demographics and CFU only)
Published PK models used to simulate exposure in patient population
PK variability assumed to be constant between studies

11



Approach: integrated PKPD modelling

Disease
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Key assumptions for disease model

Extracellular and intracellular M.tuberculosis were treated as two
different populations.

Evidence from preclinical experiments that each population display a
different growth rate (fast and slow-growing).12

A disease model was subsequently developed aiming to describe the
equilibration of both populations over time.

1) Beste et al, 2009; 2) Aljayyoussi et al, 2017
14



Data for in vivo disease model

Zhang 2012 Swanson 2016
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In vivo disease model
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VPC of In vivo disease model

Zhang 2012 Swanson 2016
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Slow
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Approach: integrated PKPD modelling

.\ PKPD
>, (backbone drug)

19



Parameterization of in vivo rifampicin effect
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Model diagnhostics and validation

Model building External validation
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Preliminary conclusions (1)

Which companion
drug(s) for rifampicin?

22



Which partner drug(s) for rifampicin?

Question: how can we capture the contribution of additional drugs to
the overall bacterial clearance, despite limited experimental data?

Proposal: treat additional drugs as discrete covariates of the potency
(IC50) of the backbone drug (rifampicin)

23



How were drug combinations assessed?
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Results with rifampicin as backbone drug

Fast growing population
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Validation of RZ model

< External validation dataset <= Model building dataset
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Preliminary conclusion (2)

Our approach allowed
parameterization of drug
combination(s) as discrete
covariates

PKPD
(drug combinations)

< Predict
< Predict

PKPD PKPD
(backbone drug) (drug combinations)
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Scaling from animal to human

PK model (clearance, volume of :>
distribution, protein binding) .

SCALING OF DISEASE

CFU levels and ratio F:S at onset treatment

Disease model (CFU levels) I:> Disease model (CFU levels)
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Predicted EBA of rifampicin in TB patients

Rustomjee et al 2008 (1)
Jindani et al 1980 (2)
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Can we predict EBA following combination treatments too?

EBA = early bactericidal activity 30



Predicted EBA of combination treatments
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Conclusions

A longitudinal model describing bacterial growth over time provides
Insight into the dose rationale for the evaluation of drug combinations.

The proposed parameterization of drug combinations as discrete
covariates offers a practical solution for the screening of novel
compounds.

Accurate predictions of treatment response in humans require scaling
of pharmacokinetics and disease characteristics, which often differ
across experimental protocols.
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VPC of in vivo rifampicin PK model
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