To quantify the association between tumor dynamics and overall survival across cancer types: a Bayesian Meta-Analysis

Assil Merlaud^{1,2,3}, Marion Kerioui^{1,4}, Jérémie Guedj¹, Davide Ronchi⁵, René Bruno^{2,6}, Alyse Lin⁷, Phyllis Chan⁷, Benjamin Wu⁷, Jin Y. Jin⁷, Pascal Chanu^{2,8}, Julie Bertrand¹

¹ Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France, ² Institut Roche, Paris, France, ⁴ MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK, ⁵ Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy, ⁶ Clinical Pharmacology, Genentech Inc. South San Francisco, USA, ⁸ Clinical Pharmacology, Genentech-Roche, Lyon, France

INTRODUCTION

- In oncology clinical trials, several endpoints are investigated including
 - Overall survival (OS): requiring long study duration
 - Other based on the tumor size measurement: with the Sum of Longest Diameters (SLD) of target lesions¹
- Modelling both via survival function and tumor growth inhibition (TGI) could enable:
 - To better quantify the response of patient to treatment

-

- To anticipate the treatment effect on OS using the TGI estimates
- kg (on-treatment growth constant of the SLD estimated by the Stein² TGI model) was shown to be a good explanatory variable of OS in different cancer types, using a two-stage TGI-OS approach^{3,4}
 - No formal statistical framework to assess the heterogeneity in the impact of kg on OS across cancer types
 - Joint modelling known to provide unbiased estimate, especially for the biomarker-survival association parameter $(\beta_{link})^5$

STAGE 1

RESULTS

OBJECTIVES

To assess whether the strength of the association between kg and OS is similar across cancer types \Rightarrow using a two-stage individual patient data meta-analysis (IP-DMA) with a joint modelling approach⁶

DATA

- Proprietary data Hoffmann-La Roche: Treatment arm of 10 randomized clinical trials, investigating \neq cancer types
- Similar population in terms of covariates across studies

Barplot of the number of patient with SLD per study (thick line) & number of SLD per study (thin line)

METHODS

• Survival sub-model for the OS,

Consideration of covariates on survival,

1. White, Asian, Sex, Age, ECOG, CRP,

3. Followed by a set of backward iteration to

remove covariate with credibility interval

0.0

Mean (with IQR and 2.5-97.5th percentile range

0.2

Covariate

Kept for all studies
Discarded

-0.2

Albumin, Number of Metastatic sites

2. Incorporation in a full model per study

that contained 0 accross all studies

Study.

Study.2

Study.

Study.2

among:

Covariate.1

Covariate.2

STAGE 1 – JOINT-MODEL TO ESTIMATE THE β_{link}^{s}

- Longitudinal parameters of the joint model differed for each study
 - Kg0 is unidentifiable in seven studies
 - Variability of parameter estimates between study
- Tumor growth under treatment faster for SCLC patient than for RCC patients
- Conversely shrinkage induced by treatment was stronger for SCLC patient than for RCC patients
- Selected survival sub-model: Lognormal Selected covariates deteriorating the survival: High Number of metastatic sites, ECOG & CRP
- Selected covariates improving the survival: Asian & High Albumin

- Development of the same structure of the joint model for each study s in terms of:
- Longitudinal sub-model for the SLD,
- Link function between longitudinal and survival sub-models, Covariate model on survival sub-model
- Estimation of the parameters for each study separately
 - in a Bayesian framework using HMC algorithm in Stan⁷
 - for each parameter, use of the same non informative priors across studies
 - Prior in adequacy with previous work⁸

- Link function: log(kg) associated to a β_{link}^{s} regression coefficient
- Using the link function, investigation of survival sub-model as Accelerated Failure Time
 - Between: Exponential, Log-logistic, Log-normal, Weibull
 - Choice based on the minimization of the WAIC across studies

STAGE 2 – RANDOM EFFECT META-ANALYSIS

With notable differences between studies (e.g. Immotion151 and IMpower133), the same joint model replicated correctly the data at the individual and population level

STAGE 2

Forest plot of the β_{link} parameter estimates and the 95% prediction interval of the estimated β_{link}

tudy	estimate	95% CI	
fmotion151	-0.186	[-0.304, -0.067]	
/passion130	-0.420	[-0.524, -0.315]	
/Power133	-0.662	[-0.833, -0.491]	
/power130	-0.730	[-0.861, -0.598]	
/power131	-0.880	[-1.007, -0.753]	
/power132	-1.021	[-1.274, -0.767]	
/power150	-0.741	[-0.886, -0.597]	
AK	-0.568	[-0.672, -0.464]	
OPLAR	-0.683	[-0.874, -0.492]	
Avigor211	-0.702	[-0.802, -0.601]	
3 _{link}	-0.650	[-0.829, -0.476]	

	REFERENCES		
[1] Eisenhauer et al. Eur J Cancer Oxf Engl 2009[2] Stein WD et al. Clin Cancer Res Off. 2011	[4] Chan P et al. CPT PSP. 2021 [5] Desmée S et al. AAPS J. 2015	[7] Carpenter B et al. J Stat Softw. 2017[8] Kerioui M et al. JCO Precis Oncol. 2023	
[3] Claret L et al. Clin Cancer Res. 2018	[6] Sudell M et al. Stat Med. 2018	[9] Cheung MWL John Wiley & Sons. 2015 [10] Kerioui M et al. ESMO Open. 2022	

$\boldsymbol{\beta}_{link}$ Prediction	-0.650	[-1.219, -0.085]				
Heterogeneity (tau): 0.24 [0.13, 0.42]		$I^2 = 92\%$	-1.5	-1	-0.5	0

- Increase of kg significantly associated with an increase of risk of death, across cancer types
- For any new study, a kg divided by 2 is expected to translate into an increase of the survival time within 6% to 132% in any cancer
 - \Rightarrow High heterogeneity of the magnitude of this association across studies
 - \Rightarrow Not explained by neither cancer types or line of treatment

- kg significantly associated with the risk of death regardless of study and cancer types
- The IPD-MA enabled to quantify a large β_{link} heterogeneity across studies: needs further investigation
- \Rightarrow Might by due to the use of SLD: aggregate the information of individual lesion coming from several organs
- Modelling the dynamics of the individual lesions within a patient in the context of joint model has been proposed^{8,10} which enabled to quantify a β_{link} at the organ level and demonstrate a large variability across location
- ⇒ Using this model in the context of an IPD-MA will enable us to explore the impact of organ-specific tumor dynamics on the risk of death across cancer types, in a desire to bridge predictive capabilities among clinical trial

Poster presented at the 32nd Annual Population Approach Group in Europe (PAGE) Meeting, 26-28 June, 2024, Rome, Italy - Author email address: assil.merlaud@inserm.fr