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→ MdPE = median(PE1, PE2, …, PEn)

→ Q1PE = percentile25(PE1, PE2, …, PEn)

→ Q3PE = percentile75(PE1, PE2, …, PEn)

• Percentage of large prediction errors (PE >5 mg/L or PE >30 %)

Data-driven model selection for model-informed 

precision dosing: a case study with vancomycin

Train a machine learning (ML) model to perform PopPK model 

selection/model averaging for vancomycin based on patients 

characteristics available before the first TDM sample, to optimize 

personalized vancomycin dosing.

• ML-based model selection and averaging:

• Outperformed individual PopPK models and naive averaging 

in predicting vancomycin concentrations.

• Show promise in MIPD settings before TDM samples are 

available.

• Performance gap observed:

• Between prospectively predicted and retrospectively identified 

best models.

• Indicates current patient characteristics explain only part of 

vancomycin exposure variability.

• Emphasizes the importance of TDM and the value of Bayesian 

approaches to model selection and averaging.

• Vancomycin is a widely-used antibiotic with a narrow therapeutic range.

• Achieving an optimal area under the concentration-time curve (AUC) 

between 400-600 mg·h/L is crucial for therapeutic success [1].

• Model-informed precision dosing (MIPD) combines therapeutic drug 

monitoring (TDM) with population pharmacokinetic (PopPK) models to 

guide dosing decisions.

• There are multiple PopPK models available for vancomycin, and 

Bayesian approaches to model selection and model averaging have 

demonstrated accuracy for vancomycin predictions with one or more 

TDM samples available [2].

• However, model selection before the first TDM sample becomes 

available remains challenging, and may be based on results from 

external validation studies, prior clinical experience and intuition. 

Background

• Final analysis dataset: 334,683 TDM observations and corresponding a 

priori predictions for each included PopPK models.

• Best models obtained using xgboost with Huber loss function (delta 0.5)

• Feature importance – top 8 ranking across all 6 PopPK models:

1. Age 

2. BMI

3. CrCL (Cockcroft-Gault)

4. Serum creatinine
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Variable n (%) Mean (SD) Median Range

Male 191,421 (57.2)

Age (year) 62.6 (16.8) 64.4 18.0-109

Serum creatinine (mg/dL) 1.20 (1.03) 0.95 0.05-20.0

Weight (kg) 88.2 (29.4) 83.0 30.0-388

Height (cm) 171 (11.1) 170 120-218

TDM observation (mg/L) 14.6 (7.04) 13.4 0.10-50.0

De-identified data entered by users of the InsightRX Nova MIPD platform, 

between 01/01/2020 and 19/09/2023 were retrospectively analyzed. Adult 

patients with at least one recorded TDM sample and corresponding a priori 

predictions from six PopPK models were included [3–9]. 
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Results

Conclusion

Removal of missing 

or improbable data

Dataset partitioned into training, validation, and test set (70-15-15% split)

Identification and selection of relevant patient characteristics (age, 

sex, height, weight, serum creatinine, etc.)

Feature engineering:

• Simple transformation (ex: CrCL, BMI)

• PopPK models-based (ex: above_wt_range)

• Standardisation or ”Z-scores”

MeanScore

Standard deviation

Training of various ML models (linear regression, 

penalized linear regression, random forests, xgboost) to 

predict the individual residual for each PopPK model
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Calculation of weights for model 

averaging based on predicted residuals
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