Beyond the Liver; An *in silico* Screening Tool for Tissue-Specific Oligonucleotide Delivery Receptors

CERTARA IN THE STATE OF THE STA

Abdallah Derbalah, Felix Stader, Cong Liu, Adriana Zyla, Armin Sepp Certara UK Ltd., Certara Predictive Technologies division

A first of a kind whole-body PBPK model for oligonucleotides has been developed. Trained initially on a single-compound single-species data, this model has demonstrated cross-species and cross-modality extrapolation capabilities. Such groundbreaking versatility positions it as a pivotal instrument in the advancement of novel targeted oligonucleotide therapeutics

Background & Objective

- Oligonucleotides intracellular delivery can be challenging due to their size and polarity.
- Several approved agents successfully targeted the liver by leveraging through conjugation with GalNAc leveraging the hepatic ASGPR receptors.
- Applying the same concept to other tissue requires identifying and evaluating optimal receptors for the target tissue.
- Traditional *in vivo* experimental evaluation of tissue targeting efficiency can be prohibitively expensive and time intensive.
- We propose to significantly enhance the process by introducing a PBPK-based *in silico* screening approach.

Methods

Modelling Platform

- The PBPK model was developed based on a biologics PBPK platform implemented in QSP Designer (V2.0.0.53; Certara, Sheffield, UK) [1].
- The platform allows a generic structure of a bodily tissue to be specified (Figure 1), then, the whole-body PBPK model is automatically built (Figure 2).
- The automation allows large PBPK models with several hundreds of ODEs, and thousands of reactions, parameters, and rules to be effortlessly and accurately generated.

Generic Organ Structure

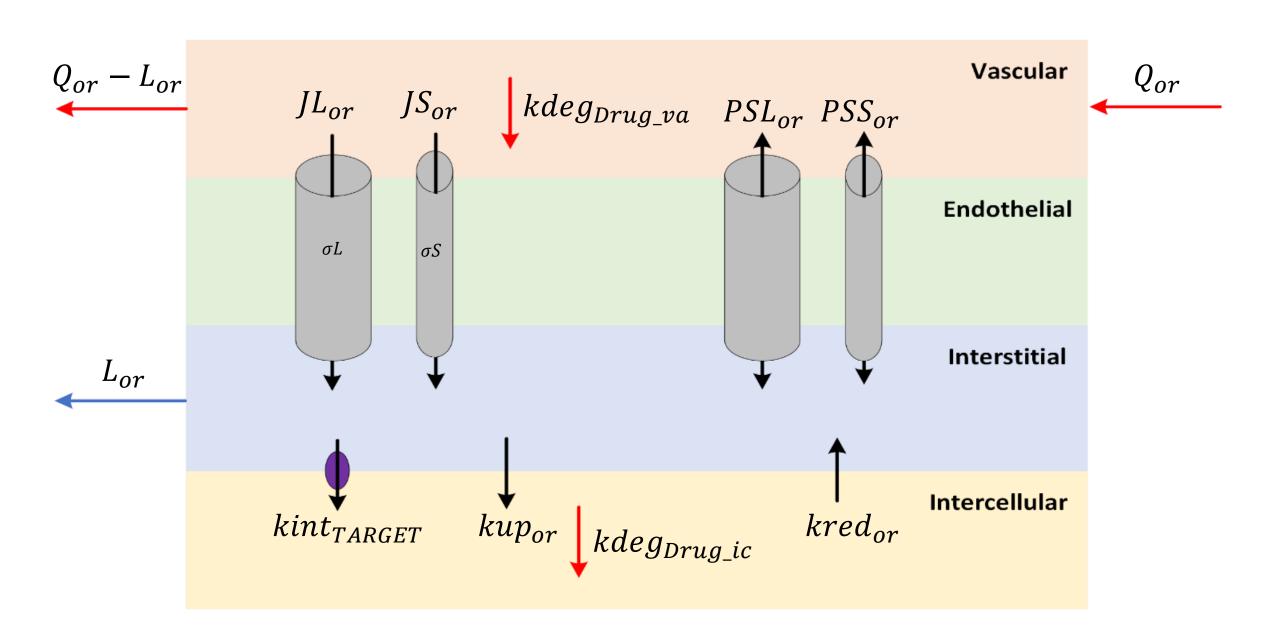


Figure 1 Schematic presentation of the key pharmacokinetic processes and parameters of the generic organ model.

Data Collection and Modelling Approach

- Non-conjugated ASO data following IV administration in rats was used to estimate the linear uptake (kup_{or}) and redistribution $(kred_{or})$ rate constants for each of the observed tissues.
- The fitted model was then validated against other ASO data from mice and rats following both IV and SC administration.
- Receptor Mediated endocytosis was then added to the model and parameterised for ASGPR-GN3 receptor ligand pair using literature values.
- The model was validated against IV and SC administered GN3-conjugated siRNA plasma and liver PK data.

Table 1: Summary of published data used to develop and validate the PBPK model. Green row: data used in

Oligonucleotide Type	Dose (route)	Species	Measurement	Reference
Non-conjugated ASO	30 mg/kg (IV)	Rats	Plasma, kidney, liver, heart, bone, spleen, lung, pancreas, and gut.	[2]
Non-conjugated ASO	3.6 mg/kg (IV)	Rats	Liver, kidney, lung, and bone.	[3]
Non-conjugated ASO	10 mg/kg (IV)	Rats	Plasma, liver, kidney, and gut.	[4]
Non-conjugated ASO	0.6 mg/kg (IV)	Rats	Plasma, liver, kidney, spleen, bone, and lung.	[5]
Non-Conjugated ASO	30 mg/kg (IV)	Mice	Plasma, liver, kidney, heart, gut, lung, and spleen	[6]
Non-conjugated ASO	1 μg (IV)	Mice	Plasma, liver, kidney, heart, gut, lung, and spleen	[7]
Non-Conjugated ASO	6 mg/kg (IV)	Mice	Plasma, liver, kidney, heart, lung, and spleen	[8]
Non-Conjugated ASO	1 mg/kg (SC)	Mice	Liver	[9]
GN3-Conjugated ASO	140 mg/kg (SC)*	Mice	Plasma, liver, kidney	[10]
GN3-Conjugated siRNA	10 mg/kg SC	Mice	Plasma, liver, kidney	[11]

Full-PBPK structure Lung D3 m4b,dos R7 m4b,ds R10 m4b,ds g.s LymphNode Heart GIT Liver ----- Spleen F Kidney Brain ar |ve Thymus Bone Muscle Adipose --L14 ← Other --L15 ← Skin ₽ Target P ---<mark>L18</mark> --tadin L20 IM imdin

Figure 2: Full-PBPK model structure as designed in QSP Designer. Each greyish-blue colour represents an instance (copy) of the generic organ structure.

Results

Non-Conjugated ASO – Rats – IV

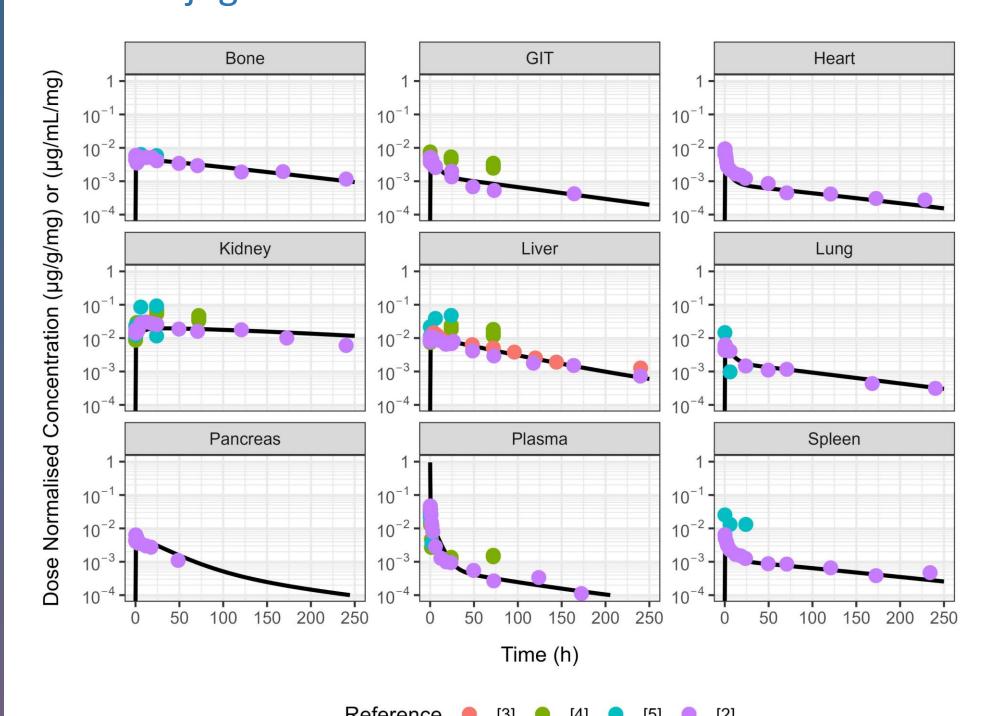
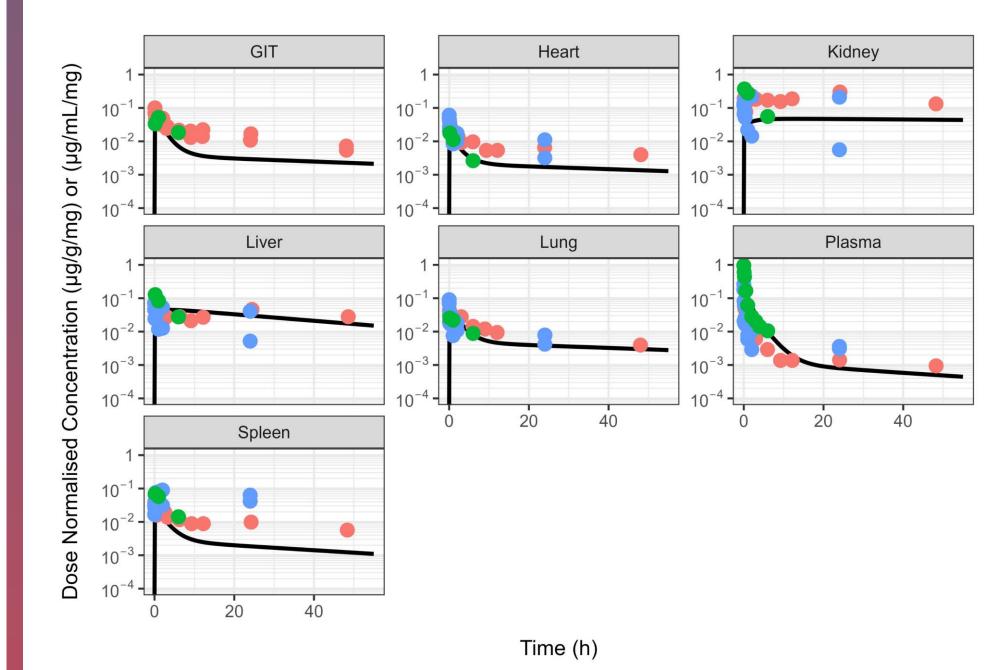



Figure 3: Model predicted tissue concentration-time profiles (solid black line) versus dosenormalised tissue concentration from different rats studies of non-conjugated ASO. Data from [2] was used for training whereas the rest of the data were for validation only.

Non-Conjugated ASO – Mice – IV

Reference • [6] • [7] • [8]

Figure 4: Model predicted tissue concentration-time profiles (solid black line) versus dosenormalised tissue concentration from different mice studies of non-conjugated ASO. None of the data were used to train the model.

GN3-Conjugated Oligos – Mice – SC

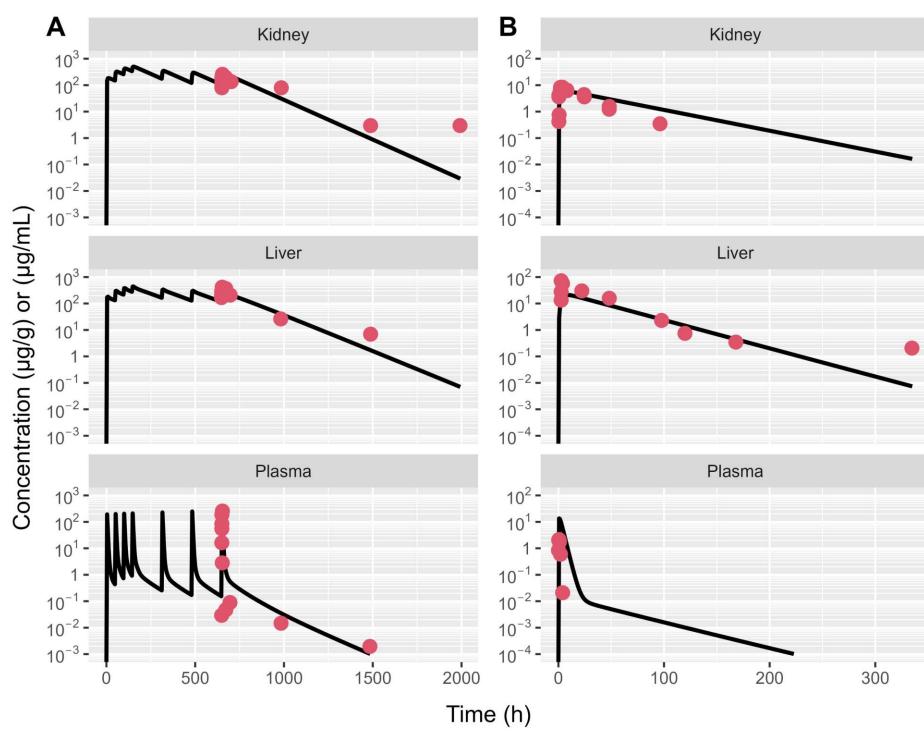


Figure 5: Model predicted tissue concentration-time profiles (solid black line) versus dosenormalised tissue concentration of GN3-conjugated ASO (A)[10] and GN3-conjugated siRNA (B)[11]. None of the data were used to train the model's system parameters.

References

[1] Matthews RJ et al. CPT: Pharmacometrics & Systems Pharmacology 2023, 12(7):889-903.
[2] Zhang R et al. Biochem Pharmacol 1995, 49(7):929-939.
[3] Cossum PA et al. J Pharmacol Exp Ther 1993, 267(3):1181-1190.
[4] Peng B et al. Antisense Nucleic Acid Drug Dev 2001, 11(1):15-27.
[5] Phillips JA et al. Biochem Pharmacol 1997, 54(6):657-668.
[6] Agrawal S et al. Proc Natl Acad Sci U S A 1991, 88(17):7595-7599.
[7] Rifai A et al. Am J Pathol 1996, 149(2):717-725.
[8] Sands H et al. Mol Pharmacol 1995, 47(3):636-646.
[9] Watanabe A et al. J Pharmacol Exp Ther 2016, 357(2):320-330.
[10] Yu RZ et al. Mol Ther Nucleic Acids 2016, 5(5):e317.
[11] Nair JK et al. Nucleic Acids Res 2017, 45(19):10969-10977.