<u>A Semi Parametric Method for the</u> Estimation of End of Treatment Effect

Mohamed Gewily, Yersultan Mirasbekov, Gustaf J. Wellhagen, Mats O. Karlsson

Pharmacometrics group, Department of Pharmacy, Uppsala University, Sweden

31st PAGE meeting

28th of June 2023

Treatment effects in Randomized Clinical Trials

- Definition: a statistically significant change in clinical outcome that is attributable to treatment compared to reference
- Typically assessed at end of treatment
- Methods used in this project:
 - Mixed models for repeated measures (MMRM)
 - Nonlinear mixed effects models (NLMEM)

UNIVERSITET

2

Metho

Application to longitudinal data

-Mixed Models for Repeated Measures (MMRM)

- model the mean and standard deviation of observations at each categorical time
- gold standard to handle dropouts

- Non Linear Mixed Effects Models (NLMEM)

- flexible progression equations
- less parameters

UNIVERSITET

Pros and cons of both methods

Estimation of end of treatment effect:

• MMRM:

estimate the difference in means between the study arms at the last time point

- mostly unbiased
- not very precise

• NLMEM:

can be made to estimate the difference in means between study arms at the last time point

- subject to misspecification bias
- can inflate type I error
- mostly more precise

Bias vs precision

- Investigate the combination of both MMRM and NLMEM for the estimation of end of treatment effect
- Investigate the impact on treatment effect estimation accuracy

Yuan and Yin article

- Semi parametric estimation of dose response curve (model averaging)
 - Unbiased non-parametric
 - More precise parametric
- Assume non-parametric estimate was unbiased
- Bootstrapping to measure error relative to initial non-parametric estimate
- A semi parametric estimator (π) :
 - Use Mean Squared Error (MSE) to estimate the best weights
- Semi parametric =
 - $\pi \times parametric + (1 \pi) \times nonparametric$

UPPSALA UNIVERSITET

Yuan et al.Biometrics. 2011 Dec;67(4):1543–54.

Background

— Obje

Models

1. MMRM with unconstrained residual error correlation structure

- Parameters: Mean at each time point
- Unconstrained residual error variance matrix

2. NLMEM

- NLMEM
- NLMEM-mis, slope misspecification
- 3. IMA (Individual model averaging)
 - IMA
 - IMA-mis, slope misspecification

Chasseloup et al. AAPS J. 2021 May 3;23(3):63.

Averaging across these pairs

7

Background

Data

Disease	Parkinson's disease	Alzheimer's disease	Diabetic neuropathy
Score	MDS-UPDRS	ADAS-Cog	Likert pain
TRT	Placebo	Natural progression	Placebo
No. individuals	85	153	114
No. observations	510	918	798
No. visits	6	6	7

Background

The Semi-Parametric Approach (SPA)

$$TE_{SPA} = \mathbf{\uparrow} \pi \times TE_{NLMEM}^* + (1 - \pi) \times TE_{MMRM}^*$$

$$\pi = \frac{MSE(TE_{MMRM}) - covb(TE_{MMRM}, TE_{NLMEM})}{MSE(TE_{MMRM}) + MSE(TE_{NLMEM}) - 2 \times covb(TE_{MMRM}, TE_{NLMEM})}$$

 $MSE(TE_{method}) = \frac{1}{B} \times \sum_{i=1}^{D} \left[\left(TE_{method}^{(b)} - TE_{MMRM}^{*} \right)^{2} \right]$

- *covb* accounts for error correlation
- Description:
 - TE treatment effect
 - TE* treatment effect before bootstrapping
 - MSE mean squared error
 - B number of bootstraps
 - Covb- covariance_bias
 - π NLMEM weight

Type I error

• Type I error assessed across 100 trials:

- the frequency of which models detect a treatment effect that is significantly different from 0 is counted as an error

Treatment effect estimate, Parkinson's disease

Treatment effect estimate, Parkinson's disease

Treatment effect estimate, Parkinson's disease

Abbreviation Meaning **MMRM** Mixed Models for **Repeated Measures** 2 NLMEM Nonlinear Mixed Effects Δ ADAS-Cog Model mis Misspecified IMA Individual Model Averaging -2 **SPA** Semi Parametric Approach Label Measurement -4 SPA Bias Mean - true effect (0) IMA_mis_SPA SPA NLMEM_mis SPA IMA_mis NLMEM MMRM NLMEM_mis_ Precision Standard deviation AMI NLMEM AM Mean Squared Error Accuracy (bias + precision) Mean ∆: -0.169 -0.059 0.125 -0.101 -0.090 -0.015 -0.041 -0.095 -0.069 SD Δ : 1.518 1.169 0.790 1.161 0.745 1.174 0.686 1.201 0.625 UPPSALA UNIVERSITET

Results

Treatment effect estimate, Alzheimer's disease

Treatment effect estimate, Diabetic neuropathy

MSE of the Semi-Parametric Approach (SPA)

	MSE			
Methods:	Parkinson's	Alzheimer's	Diabetic	
	disease	disease	neuropathy	
MMRM	9.72	2.32	0.19	
NLMEM SPA	5.34	1.36	0.09	
misNLMEM SPA	9.51	1.43	0.10	
IMA SPA	5.33	1.35	0.09	
IMA_mis SPA	5.89	1.37	0.09	

UPPSALA UNIVERSITET

Type I error

	Type I error (%)			
Methods:	Parkinson's	Alzheimer's	Diabetic	
	disease	disease	neuropathy	
MMRM	7	4	6	
NLMEM	0	12	3	
NLMEM SPA	2	4	4	
misNLMEM	100	5	53	
misNLMEM SPA	14	3	18	
IMA	0	3	4	
IMA SPA	2	2	4	
IMA_mis	2	3	4	
IMA_mis SPA	2	3	4	

Background

Method

An example of model fit

Conclusions

- SPA had better treatment effect estimation accuracy compared to MMRM
- SPA resulted in more controlled type I error compared to NLMEM
- IMA was unbiased in all scenarios, and had better treatment effect accuracy compared to MMRM
- SPA is a compromise between MMRM and NLMEM/IMA and is sensitive to the properties of those components
- SPA is a tool that lies on a continuum of methods that can be used to estimate treatment effect

Conclusions

Acknowledgements

- Pharmacometrics group
- PK/PD group
- Apotekarsocieteten
- Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX)

