

Utilizing the items from the MDS-UPDRS score to increase drug effect detection power in de novo idiopathic Parkinson's disease patients

Simon Buatois^{1,3}, Sylvie Retout¹, Nicolas Frey¹, Sebastian Ueckert^{2,3}

PAGE meeting 06/10/16

1. pRED, Clinical Pharmacology, Roche Innovation Center Basel, Switzerland

- 2. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- 3. IAME, UMR 1137, INSERM, F-75018 Paris, France

Parkinson's disease (PD)

PD clinical trials

- Primary outcome measure:
 - Change from baseline to end of trial in total MDS-UPDRS score

- Questions:
 - Could the power of detecting a drug effect be increased by changing:
 - Outcome: Analyzing a subset of the scale (most informative items) for a known drug effect?
 - Analysis method: Integrating the whole available items information using item response theory (IRT)?

PPMI Clinical Data¹

Ongoing study

- Clinical Design: Time (years) 2 years 4 years 5 years

 N = 429
 De novo PD Patients N=297
 N = 197
 Healthy Control subjects
 N = 65
 SWEDD* Patients
 Observation times: every 3 to 6 months
- PD medications (*de novo* PD patients):
 - At baseline all patients are treatment-naïve
 - PD medications may be initiated at any time
 - At 9 months more than 50% of patients were taking PD medications
 - L-dopa or dopamine agonists

[1] www.ppmi-info.org/data*Subjects Without Evidence of Dopaminergic deficit

Item Response Theory – IRT

- Methods:
 - Each item of the MDS-UPDRS is a surrogate measure of the neuronal disability

Relate the probability of the score k in each item j to an hidden variable D for a patient i

 $\frac{\text{Ordered categorical model}}{P(\Upsilon_{ij} \ge k)} = \frac{e^{a_j (D_i - b_{j,k})}}{1 + e^{a_j (D_i - b_{j,k})}}$

 $P(\Upsilon_{ij} = k) = P(\Upsilon_{ij} > = k) - P(\Upsilon_{ij} > = k+1)$

Item specific parameters:
 a power of discrimination
 b difficulty

Item Response Theory – IRT

• Results:

- 3 correlated hidden variables D_v accurately capture the composite nature of the MDS-UPDRS score:
 - > Motor disability (D_M)
 - > Non-Motor disability (D_{NM})
 - > Tremor disability (D_{τ})
- Precise estimation for most of the item-specific parameters
 - RSE below 30%

Longitudinal MDS-UPDRS model

Clinical Trial Simulations (CTS)

- Model
 - Longitudinal MDS-UPDRS model
 - Hypothetical disease modifying drug effect:
 - Scenario 1: 50% reduction of the rate of disease progression (DP)
 - Scenario 2: 50, 30 and 20% reduction of the DP for respectively the motor, tremor and non-motor items
- Design
 - Placebo versus treatment arm
 - Observation times: 0 and 6 months
 - Population: de novo PD patients
 - Number of subjects: range from 0-600 patients

Select the most informative items

- Methods:
 - **Approach:** Compute the score difference Δ_c between placebo S1 and treatment S2 arms under the total number of combination C of items and each scenario at end of trial
 - **Optimal combination of items**: $\operatorname{argmax}(P(\Delta_c > 0))$
 - Limiting factor: C (>10¹⁵ combinations) → Greedy algorithm¹
 → Heuristic to approximate the optimal set
 → Corresponds to the forward approach in covariate selection

S1 and S2 were approximated by $N_{S1}(\mu_1, \sigma_1)$ and $N_{S2}(\mu_2, \sigma_2)$: For each combination of items

 $\succ \mu \cong \sum_j \overline{y}_j$

 $ightarrow \sigma \cong$ variance for the sum of correlated variables

Select the most informative items

Power to detect a drug effect

- Methods:
 - End of trial comparison
 - Power was computed using parametric power estimation¹
 (PPE) for the 2 scenarios and under different conditions:

Analysis	Summary score	IRT model
Test	t-test/MMRM	LRT
Outcome measure	Total number of items	
	Optimized set of items	

Power to detect a drug effect

Power to detect a drug effect

Conclusion

- Adequate description of the data at both item and total score level using longitudinal three hidden variables IRT based modelling.
- Selection of the most informative items of the MDS-UPDRS may be used to increase power of a summary score analysis. However, it requires an accurate assumption of drug effect prior to the analysis.
- IRT analysis based on all collected data items increase the power compared to the summary score analysis without the need for an *a priori* selection of the most informative items and is the recommended approach.

Acknowledgements

Inserm Colleagues:

Roche Colleagues:

