A semi-mechanistic gastric emptying pharmacokinetic model for \(^{13}C\)-octanoic acid: an evaluation using simulation

K Oyngbemoh L.Aaron
Centre for Applied Pharmacokinetic Research, School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Manchester.
Email: kayode.oyngbemoh@manchester.ac.uk

Introduction

- Gastric emptying (GE) is important for human nutritional health and oral drug absorption.
- There are three main methods for studying GE: scintigraphy\(^2\), paracetamol absorption test\(^2\) and \(^{13}C\)-octanoic acid breath test (OABT)\(^3\).
- Scintigraphy is very accurate and it is the gold standard. However, it is unsafe, requires expensive equipment and is not generally available.
- \(^{13}C\)-octanoic acid breath test (OABT) is used for indirect assessment of the rate of GE.
- Compared to scintigraphy OABT is cheaper and safer and can be performed anywhere.
- OABT measures the rate of \(^{13}CO_2\) exhaled in breath and this is converted to scintigraphy GE equivalents.
- There are inconsistencies when results from OABT are compared with simultaneous and direct measurements using scintigraphy\(^4\).
- Parameters from OABT do not reflect only GE but other processes: absorption, metabolism, distribution and elimination.
- A semi-mechanistic model was recently proposed for the analysis of OABT data which is based on repeated/parallel experiment and a constraint\(^5\).
- The model incorporates all processes (absorption, metabolism, distribution and elimination) involved between the ingestion of \(^{13}C\)-octanoic acid meal and elimination of \(^{13}CO_2\) in breath.

Objective

To assess the performance of the semi-mechanistic model using simulation against three currently used methods (modified exponential model\(^6\), Ghoos\(^7\) method and Wagner-Nelson method\(^8\)) that have been used to convert parameter (half emptying time) from OABT to scintigraphy equivalents.

Repeate Study Design

![Repeated Study Design Diagram](image)

The Model (kg model)

\[
\begin{align*}
\text{Stomach (BASE)} &\rightarrow \text{Intestine} \rightarrow \text{Body 1} \rightarrow \text{Body 2} \rightarrow \text{Breath} \\
\text{ka} &\rightarrow \text{kg (hr)} &\rightarrow \text{ka} &\rightarrow \text{kg (hr)} &\rightarrow \text{ka} &\rightarrow \text{kg (hr)}
\end{align*}
\]

Parameters: \(k_g, k_a, k_b, k_n, k_{12}, k_{21}\)

\[T/2kg = \ln 2/\text{kg}\]

Other Methods

- **Modified Exponential Model**
 \[PDR(\% \text{dose/hr}) = \frac{mk}{\exp}\left(-\frac{1}{1/2} \right) \]
 \[T/2exp = \left(-\frac{1}{1/2} \right) \]

- **Ghoos Method**
 \[PDR(\% \text{dose/hr}) = 2\ln a \exp -b \]
 \[T/2ghoos = \frac{1}{2} \ln \left(\frac{1}{2} \right) \]

- **Keller Method**
 \[\frac{F(t)}{A_0} + PDR(0.65)A_0 = \frac{A_0}{A_0} + PDR(0.65)A_0 \]
 \[y(t) = \exp -\frac{1}{2} \]
 \[T/2wag = \ln 2/k \]

Typical Profiles and Fittings

![Typical Profiles and Fittings](image)

Results

- **Simulations**
 - Breath profiles were simulated using ordinary differential equations based on the semi-mechanistic model and the parameter values under four settings assuming 50 subjects and repeated study design.
 - Sim 1 - variability on all parameter Sim 2 - no variability on kg and ka
 - Sim 3 - variability on kg and ka only Sim 4 - no variability on all parameters.
 - Simulations were based on baseline and treatment OABT (treatment by a hypothetical prokinetic drug that increases kg by 50%).
 - Fittings were done for individual simulated breath profile in MATLAB using lnsapln and kg model and the other three methods.

 The true half emptying times from stomach profiles (T/2s) were compared with the half emptying times obtained by the kg model (T/2kg) and the other three methods (T/2mod, T/2ghoos and T/2wag).

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Var</th>
<th>Mean</th>
<th>Var</th>
<th>Mean</th>
<th>Var</th>
<th>Mean</th>
<th>Var</th>
<th>Mean</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_g (\text{hr}))</td>
<td>2.8</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>(k_a (\text{hr}))</td>
<td>4.5</td>
</tr>
<tr>
<td>(k_n (\text{hr}))</td>
<td>0.1</td>
</tr>
<tr>
<td>(k_{12} (\text{hr}))</td>
<td>100</td>
</tr>
<tr>
<td>(k_{21} (\text{hr}))</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Conclusion

- Only the semi-mechanistic model can estimate accurately gastric half emptying times from breath profiles obtained during OABT.
- The semi-mechanistic model incorporates all processes involved between the ingestion of \(^{13}C\)-octanoic acid meal and elimination of \(^{13}CO_2\) in breath, all of which are modeled simultaneously.
- Half-emptying times obtained using modified exponential model, Ghoos method and Wagner-Nelson method are the time taken for half of the total cumulative dose of \(^{13}C\) to be recovered as \(^{13}CO_2\) in breath and not the time taken for half of \(^{13}C\)-octanoic acid to be emptied from the stomach.
- These half emptying times do not reflect only the rate of GE but are affected by other processes such as absorption, distribution, metabolism and elimination.
- The new semi-mechanistic model can be used as a PK/PD model and the use of this model will allow efficient assessment of the rate of GE especially during drug development.

References