
Two methods for local identifiability were developed, based on well-known matrices.

Methods were implemented in R [5] and validated on standard examples (data on file). To reduce

numerical approximation errors, implementations optionally make use of symbolic calculations. The

methods were applied to a TMDD-QE model (Fig. 1 and Table 1) with seven structural parameters, at

three individual dose levels (12.5, 100, 750 μg/kg) separately, or to all three combined.

Method 1 (Fig. 3a-c)

The Sensitivity Matrix Method (SMM) uses the matrix of derivatives of the model outputs with respect

to the structural parameters. Unidentifiable directions in parameter space correspond to vectors in the

null space of this matrix. As the null space is difficult to determine numerically, several proxy indicators

were developed that identify near-singularities of the matrix and the corresponding parameter vectors.

• The Skewing Angle, which measures the absolute angle between the images of the parameter vectors

under the sensitivity matrix;

• The Minimal Parameter Relations, listing the parameter vectors closest to singularity. Their vector

norms (M-norm) indicate the level of identifiability;

• The Least Identifiable Parameter(s), indicating the parameters closest to dependence on the others.

Method 2 (Fig. 3d)

The Fisher Information Matrix Method (FIMM) determines the approximate shape of the objective

function value (OFV) with respect to the parameters. Unidentifiable directions in parameter space

correspond to vectors in the null space of this matrix. As for the SMM, proxy indicators are determined.

• Curvatures of the OFV surface, that describe the bending of this surface. A zero curvature means the

OFV value does not change in the corresponding parameter direction;

• The maximum change in parameter values corresponding to a given OFV change;

Unlike the SMM, this method can handle normally distributed random effect parameters.

Both methods can be applied to any smooth model described by ordinary differential equations.
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In pharmacometric modelling, it is often important to know whether the data is sufficiently rich to

identify the parameters of a proposed model. While it may be possible to assess this based on the

results of a model fit, it may be difficult to disentangle identifiability issues from other model fitting

and numerical problems. Furthermore, it can be of value to ascertain identifiability beforehand from

study design.

The parameters of a model are identifiable if two different parameter vectors always lead to two

different model outputs. In practice one often focuses on local unidentifiability, characterized by a

curve in parameter space of constant model output. The tangent to the curve is the unidentifiable

direction.

Several methods are available to assess parameter identifiability, such as DAISY [1], Aliasing [2] or the

$DESIGN option in NONMEM [3]. However, they are sometimes limited in scope (both regarding the

models to which they can be applied and the issues that can be identified) and may make unrealistic

assumptions. Also, they may be difficult to use, and implementations are not always available.
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The aim of this work was to develop two new methods for identifiability analysis prior to model

optimization that address these drawbacks. Their use is illustrated with an example problem.

Two new methods were developed for identifiability analysis and were applied to a TMDD-QE example model from literature. They can be applied to any smooth model described by ordinary

differential equations. They can detect any local identifiability issues and find the corresponding directions in parameter space. The methods provide a set of indicators that characterize

identifiability on a continuous rather than categorical scale and are best assessed in combination. Both methods are easy to use and will be publicly available. They require as input a definition

of the model, its parameters, sample times and dosing levels and times. Actual observations are not required.

Results from each of the three individual dose levels showed identifiability issues with both methods (Fig. 4). Even at the highest dose level, where the model traversed all phases of the TMDD profile, there were

two unidentifiable directions, involving the nonlinear binding parameters. All parameters became identifiable in a scenario where the dose levels were combined.

Conclusion

Introduction Methods

The methods were applied to a quasi-equilibrium (QE) approximation to a Target Mediated Drug

Disposition (TMDD) model, describing leukaemia inhibitory factor (LIF) data in sheep, with parameter

values, sample times and dose levels obtained from Abraham et al. [4]. The output consisted of the PK

concentration at the reported sample times.

Objectives

Application

Parameter Abbreviation Value Unit

Elimination rate constant kel 1.49 h-1

Central and peripheral volume Vc = Vp 51.2 mL/kg

Tissue distribution rate constant kpt = ktp 0.389 h-1

Equilibrium dissociation constant kD 1.22 nM

Initial receptor concentration Bmax 8.19 nM

Internalization rate constant kint 3.16 h-1

Degradation rate constant kdeg 0.67 h-1

Figure 1: TMDD-QE model for LIF, 
with receptor binding and complex  
internalization.

Figure 2: Plasma concentration profiles and 
sampling points.

(a) SMM: Skewing angle (b) SMM: Minimal parameter relation

(c) SMM: Least identifiable parameter (d) FIMM: Curvature and parameter changes

Identifiability of parameter 𝑒3 characterized by distance 𝑤3

OFV

par2par1

curv1curv2

Table 1: Model parameters, from Abraham et al. [4]. 

Model structure and parameter values

Results

Figure 3: Illustration of the methods.
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Figure 4: Composite model identifiability 
visualization from SMM (skewing angle, M-
norm, Least identifiable parameter) and FIMM 
(curvature), on a log scale.
All indicators have low values for the single 
dose level scenarios, indicating non-
identifiability, and higher ones for all dose 
levels combined, showing identifiability.

Figure 6: SMM results: minimal parameter 
relation per unidentifiable scenario (so 
excluding the “all doses” case). High values 
indicate the parameter is badly identifiable.
This shows that different combinations of 
parameters are badly identifiable for the 
individual dose levels.

Figure 5: FIMM results: Curvature 1-8 for 
scenarios for each single dose level and for a 
scenario with all three dose levels combined.
These confirm the radar plot summary and 
demonstrate that the TMDD-QE model 
becomes identifiable only in a scenario where 
the three dose levels are combined.

Figure 7: FIMM results: size of relative 
parameter change corresponding to significant 
change in OFV, per scenario and first four 
curvatures. Orange color and large sizes  
indicate bad identifiability, while green 
indicates parameter changes below 50%.
This confirms the SMM results and shows 
identifiability for the combined scenario. 
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