Model-based bioequivalence analysis of recombinant human growth hormone using the SAEM algorithm: liquid or lyophilized formulation Omnitrope[®] versus original lyophilized formulation Genotropin[®] **S. SANDOZ UNOVARTIS** S DEROT Inserm

Anne Dubois⁽¹⁾, Sigrid Balser⁽²⁾, Sandro Gsteiger⁽³⁾, Etienne Pigeolet⁽³⁾ and France Mentré⁽¹⁾

⁽¹⁾INSERM UMR 738, University Paris Diderot, Paris, France; ⁽²⁾Sandoz Biopharmaceutical Development, Holzkirchen, Germany; ⁽³⁾Novartis Pharma AG, Basel, Switzerland

Context

- ♦ Standard bioequivalence analysis (FDA^[1] and EMEA^[2])
- Compute AUC and C_{max} by non compartmental analysis (NCA) Test on log parameters

Using linear mixed effects model with treatment, period, sequence, and subject effects

 Nonlinear mixed effects models (NLMEM)^[3,4] Simultaneous data analysis for all subjects

Objectives: mimick standard bioequivalence analysis using NLMEM and apply this method on a real dataset

Model-based Bioequivalence

- NLMEM bioequivalence analysis mimicking NCA analysis
- Statistical model

ARI

- Parametric pharmacokinetic (PK) model
- Between and within subject variability
- Treatment (β), period, and sequence effects
- Parameter estimation by maximum likelihood
- SAEM algorithm implemented in MONOLIX 2.4^[5,6]

Bioequivalence Wald test

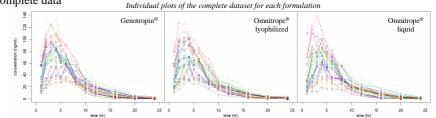
- ♦ Schuirmann's test^[7] H₀: { $\beta \le \log(0.8)$ or $\beta \ge \log(1.25)$ }
- × Rejection of H₀: CI_{90%}($\hat{\beta}$) ∈ [log(0.8); log(1.25)]
- CI_{90%} computed from the estimated treatment effect and its standard error (SE)
- Wald test on secondary parameters^[8]
- × β_{AUC} = − β_{CLF} (linear PK) → SE(β_{AUC}) =SE(β_{CLF})
- × $β_{Cmax}$: nonlinear function of fixed effects → estimation of SE($β_{Cmax}$) by delta method

Data

Somatropin

- Growth hormone (GH) of recombinant DNA origin Use for GH deficiency in paediatrics and adults
- Different drug formulations
- Genotropin® by Pfizer: 5 mg/ml lyophilized formulation (reference) Omnitrope[®] by Sandoz: 5 mg/ml lyophilized and 3.3 mg/ml liquid
- formulations (biosimilars)
- Randomized, double-blind crossover trial
- 3 formulations, 3 periods, and 6 sequences
- ♦ 36 healthy caucasian adults
- ▲ 1 withdrawn subject, data only for the first period → analysis on 35 subjects
- Dosing regimen: subcutaneous single dose of 5mg
- Sampling times
- × 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24 hours after each administration
- Concentrations measured with LOQ=0.2 ng/ml
- Application
 - Complete data with 12 samples per subject and period
 - Sparsified data with 6 samples per subject and period

[11] Stanhope R et al. J Clin Pharmacol. (2010)

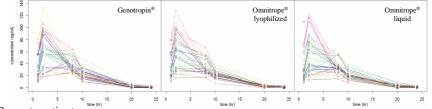

- Design optimisation using PFIM 3.2^[9,10]
- F Parameter estimates of Genotropin® data using NLMEM
- [1] FDA. Ucm070244. (2001)
- [2] EMEA. CPMP/EWP/QWP/1401/98 Rev. 1. (2010) [12] Fuhr U et al. Eur J Endocrinol. (2010)
- [3] Dubois A et al. Pharm Res. (2010)
- [4] Panhard X et al. Stat Med. (2007) [5] Kuhn E and Lavielle M. ESAIM P&S. (2004)
- [6] www.monolix.org
- [7] Schuirmann DJ. J Pharmacokinet Biopharm. (1987) [8] Dubois A et al. submitted

[9] Bazzoli C et al. Comput Methods Programs Biomed. (2010) [10] www.pfim.biostat.fr

- Results
- Model building
 - ♦ Structural model: one-compartment model with first-order absorption with a lag time and first-order elimination^[11]
 - ♦ Statistical model
 - × 40 fixed effects

 - × 8 between (ω) and within subject (γ) variability parameters
 - Combined error model
 - Successful estimation for both datasets

Complete data


	Parame	ter estimates (SE) obtained by	MONOLIX 2.4	4 for the comp	olete data	
	λ	$\beta_{lyophilized}$	β_{liquid}	ω	γ	a (ng/ml)	b
t _{lag} (h)	0.46 (0.08)	-0.25 (0.08)	-0.04 (0.06)	0.38 (0.06)	0.12 (0.06)	0.12 (0.02)	0.14 (0.004)
$k_{a} (h^{-1})$	0.32 (0.05)	-0.24 (0.1)	-0.11 (0.11)	0.15 (0.08)	0.27 (0.08)		
V/F (l)	25.83 (6.24)	-0.14 (0.12)	0.01 (0.13)	0.39 (0.04)	0.36 (0.04)	Period and s	equence effects
CL/F (h/l)	8.66 (0.86)	0.01 (0.03)	0.05 (0.03)	0.23 (0.01)	0.10 (0.01)	(28 paramete	rs) not reported
corr _{CL-V}				0.95	0.67		

♦ Bioequivalence analysis

Ratios and CI_{90%} obtained by NCA and NLMEM for AUC and C_{max} with the complete dataset

	A	UC	C	max	
	[CI	90%]	[CI	90%]	_
	NCA	NLMEM	NCA	NLMEM	▼ Similar ratios for AUC and C _{max} by
Omnitrope® lyophilized	0.99	0.99	0.92	0.94	NCA ^[12] and NLMEM
vs. Genotropin®	[0.94; 1.03]	[0.95; 1.04]	[0.85; 0.99]	[0.84; 1.04]	_
Omnitrope® liquid vs.	0.95	0.95	0.90	0.92	
Genotropin [®]	[0.90; 0.99]	[0.92; 1.00]	[0.83;0.97]	[0.83; 1.02]	

- Sampling times: 1, 2, 8, 10, 20, 24 hours
 - Individual plots of the sparsified dataset for each form

- ♦ Parameter estimates
 - Better fit with the proportional model error
- ♦ Bioequivalence analysis

Ratios and $CI_{90\%}$ obtained by NLMEM for AUC and C_{max} with the sparsified dataset

	AUC	C _{max}	
	[CI _{90%}]	[CI _{90%}]	
Omnitrope® lyophilized	0.98	0.87	
vs. Genotropin®	[0.94; 1.03]	[0.80; 0.95]	
Omnitrope [®] liquid vs.	0.94	0.89	
Genotropin®	[0.89; 0.98]	[0.82; 0.97]	

Conclusion

- Omnitrope[®] lyophilized and liquid bioequivalent to Genotropin[®] by NCA and NLMEM bioequivalence analysis
- Model-based bioequivalence test
 - ♦ Good statistical properties under asymptotic conditions
 - Correction needed for small sample size
 - Advantages compared to NCA
 - Few samples per subject → bioequivalence on patients, children
 - ▼ Nonlinear PK
 - Taking into account data below LOQ

- Sparsified data