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Introduction: New formats enabling the efficient exchange and integration of Pharmacometric and Quantitative System Pharmacology models across software tools have been defined and
implemented as key elements of the DDMoRe interoperability platform [1]. Specifically, PharmMI. has been designed as the exchange medium for mathematical and statistical models [2, 3], and the
Standard Output (SO) has been developed as a complementary component for storing typical output produced in a pharmacometric workflow. PharmMI. and SO, as essential elements of the
DDMoRe interoperability platform, proved to be capable to handle complex modeling scenarios, and to facilitate model exchange and results storage across various tools.
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Figure 1: The role of PharmMIL./SO and their connection to the target tools.

* Reuse of existing models, e.g. BioModels database of
computational models of biological processes (SBML).
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ProbOnto — knowledge base of probability distributions, and individual parameters, random effects, covariates

featuring more than 100 uni- and multivariate and dosing records for each subject.

* Optimal Design section holds data following design
evaluation or optimization steps, e.g. FIM, covariance

distributions with their defining functions, characteristics,
relationships and re-parameterization formulas [3].
Facilitates the encoding of distribution-based models,

matrix, parameter values, their precision, information
about the adopted criteria and performed tests.
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related functions and can be used for model annotation.
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