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Background & Objective
Supporting Cancer Immunotherapy Landscape

0

   

In cancer immunotherapy, clinical teams quickly move to combination trials as an attempt to improve treatment response rates. 
This results in a plethora of combinational studies run by pharmaceutical companies.

Early readouts of peripheral pharmacodynamic (PD) biomarkers could supplement tumor assessments toward an early 
understanding of the disease state and a better decision-making on patient management and study prioritization. 

1 2PRECISION MEDICINE                                                         DRUG DEVELOPMENT

… predict long-term survival outcome 
for patients enrolled in combination 
trials to inform their management?

… predict if a new molecular entity 
given as a combination is likely to 
outperform the monotherapy? 

Leveraging retrospective data on single immuno-agent, can we…
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Clinical Trials

Validation2 years of longitudinal data 6/12/24 weeks  of longitudinal data 6/12/24 weeks  of longitudinal data

Pooled Phase II  atezolizumab (ATZ) studies 
(i) BIRCH 
(ii) FIR  
(iii) POPLAR   

OAK Phase III ATZ study 
 

(i) ATZ + Carboplatin + Paclitaxel
(ii) ATZ + Carboplatin + nab-Paclitaxel 
(iii) ATZ + Bevacizumab + Carboplatin + 
Paclitaxel 

 

Covariates 
SOCIAL/DEMOGRAPHIC 

LABORATORY VALUES

LONGITUDINAL BIOMARKERS

TUMOR CHARACTERISTICS 

DEVELOPMENT VALIDATION APPLICATION

sum of longest diameters + neutrophils, albumin, 
lactate dehydrogenase

* Note: same ATZ dosing regimen as in development 

BIRCH = NCT02031458; FIR = NCT01846416; POPLAR = NCT01903993; OAK = NCT02008227; IMpower131 = NCT02367794;  IMpower150 = NCT02366143; NSCLC = non-small cell lung cancer

Full Data Overview: from Single Agent studies to Ongoing Combinations
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Technical Snapshot
Bridging Pharmacometrics and Machine Learning

SOCIAL/    
DEMOGRAPHIC 

LABORATORY 
VALUES

TUMOR 
CHARACTERISTICS 

EBEs from 2 yrs 
LONGITUDINAL  
BIOMARKERS 

MACHINE 
LEARNING

EBEs from 6/12/24 wks
LONGITUDINAL 

BIOMARKER

Application

Landmark approach for dynamic predictions                                                                                                                                                                                                                   
1.    only patients who survived till the landmark are eligible                                                                                                                                                                                                   
2.    baseline shifted to the landmark                                                                

Time 
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ro
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EBEs = Empirical Bayes Estimates
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Modeling choices

PMx IN DEVELOPMENT

PMx IN APPLICATION
Bayesian feedback approach 
for the EBEs on landmark data                     

6-week observations 
# obs. TK 

# obs. LDH
# obs. NEUTROPHILS

# obs. ALBUMIN

Min   Max
1         4
2         9
1         6
1         7

STEIN MODEL

S0 * (e       )                       t < 0

S0 * (e        + e        - 1)    t  ≥ 0                                 
f(t) = 

HYPERBOLIC FUNCTION

 p + e   f(t) = 

 SLD   |   LDH   |   NEUTROPHILS                        

 ALBUMIN         

KS   KG   

S0   

q   

p   

exp(l)   

SLD = Sum of Longest Diameters; LDH = lactate dehydrogenase

KG * t

KG * t            -KS * t       

l        q - p  

 t + e  l       
*

Pharmacometric and Machine Learning models
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Modeling choices

PMx IN DEVELOPMENT

PMx IN APPLICATION
Bayesian feedback approach 
for the EBEs on landmark data                     

6-week observations 
# obs. TK 

# obs. LDH
# obs. NEUTROPHILS

# obs. ALBUMIN

Min   Max
1         4
2         9
1         6
1         7

ML IN DEVELOPMENT

S0 * (e       )                       t < 0

S0 * (e        + e        - 1)    t  ≥ 0                                 
f(t) = 

HYPERBOLIC FUNCTION

 p + e   f(t) = 

Ensemble method that averages 
cumulative hazard functions from survival 
tree predictors trained on a bootstrap data 
sample

 SLD   |   LDH   |   NEUTROPHILS                            RANDOM SURVIVAL FOREST

 ALBUMIN         

Tree1 → S(t)1                Tree2 →   S(t)2              Treen →   S(t)n                        
                       

Average S(t)                        
                       

KS   KG   

S0   

q   

p   

exp(l)   

SLD = Sum of Longest Diameters; LDH = lactate dehydrogenase

KG * t

KG * t            -KS * t       

l        q - p  

 t + e  l       
*

Pharmacometric and Machine Learning models

STEIN MODEL
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Trust for High-Risk Context-of-Use

CONFIDENCE
Inductive conformal prediction (ICP) to equip 
predictions with uncertainty quantification 

Instead of point estimates, ICP outputs a set of 
possible labels - for us, {Alive}, {Death}, {Multiple}, 
{Empty} - that are likely to contain the true label with a 
user-defined confidence.  

We set confidence level to 85%
→ ~ 72% patients on average deemed evaluable 

ATZ + CP = Atezolizumab + Carboplatin + Paclitaxel; ATZ + BCP = Atezolizumab + Bevacizumab + Carboplatin + Paclitaxel;                                          
ATZ + CnP = Atezolizumab + Carboplatin + nab-Paclitaxel 

Incorporating predictive uncertainty quantification 
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Trust for High-Risk Context-of-Use

CONFIDENCE ACCURACY
Competitive performances were obtained, holding 
promises for high-risk applications

Inductive conformal prediction (ICP) to equip 
predictions with uncertainty quantification 

Instead of point estimates, ICP outputs a set of 
possible labels - for us, {Alive}, {Death}, {Multiple}, 
{Empty} - that are likely to contain the true label with a 
user-defined confidence.  

We set confidence level to 85%
→ ~ 72% patients on average deemed evaluable 

ATZ + CP = Atezolizumab + Carboplatin + Paclitaxel; ATZ + BCP = Atezolizumab + Bevacizumab + Carboplatin + Paclitaxel;                                          
ATZ + CnP = Atezolizumab + Carboplatin + nab-Paclitaxel 

Incorporating predictive uncertainty quantification 
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Precision Medicine Decision Tree

Is the 6-week model  
confident to discriminate?

6-week data

NOYES

Patient evaluation

Treatment 
continuation

Treatment 
discontinuation

Patient monitoring

Is the 12-week model 
confident to discriminate?

12-week data

NOYES

Patient evaluation

Treatment 
continuation

Treatment 
discontinuation

Patient monitoring

Is the 24-week model 
confident to discriminate?

24-week data

NOYES

Patient evaluation

Treatment 
continuation

Treatment 
discontinuation

Patient monitoring

< 2% of patients

A Clinical Decision Support to assist Oncologists on Patient Management
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Case Example at Individual Level 
Evaluation vs Monitoring

BSL         
par1

BSL   
par2

NLME 
par1

NLME 
par2

76 3.45 0.01 0.2

76 3.45 0.015 0.22

76 3.45 0.04 0.28

with 6 weeks data                                                                                                
(at least one CT scan post baseline)A

Individual conditional dataset with 
100 plausible covariate sets

Same baseline 
covariates

Samplings from
Individual conditional 

distribution

Uncertainty into 
decision-making

SLD = Sum of Longest Diameters; BSL = baseline; NLME = non-linear mixed effects
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Case Example at Individual Level 
Providing a therapeutic recommendation

Heart 
Rate

Red 
Blood 
Cells

NLME 
par1

NLME 
par2

76 3.45 0.01 0.2

76 3.45 0.015 0.22

76 3.45 0.04 0.28

with 6 weeks data                                                                                                
(at least one CT scan post baseline)A

Individual conditional dataset with 
100 plausible covariate sets

Same baseline 
covariates

Samplings from
Individual conditional 

distribution

Uncertainty into 
decision-making

SLD = Sum of Longest Diameters

PATIENT EVALUATION → TREATMENT DISCONTINUATION/ADJUSTMENT



12

Case Example at Individual Level 
Individual Risk-Factor Analysis

                                                         What can we learn from Patient A signature ?

bsl = baseline, bnlr = baseline neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate,                                                                            
rbc = red blood cells, ldh = lactate dehydrogenase, tk = tumor kinetic, KS = shrinkage rate, KG = regrowth rate, 
S0 = magnitude at t=0

Average importance: absolute magnitude

Directionality of the impact: sign
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Case Example at Individual Level 
Individual Risk-Factor Analysis

                                                         What can we learn from Patient A signature ?

bsl = baseline, bnlr = baseline neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate,                                                                            
rbc = red blood cells, ldh = lactate dehydrogenase, tk = tumor kinetic, KS = shrinkage rate, KG = regrowth rate, 
S0 = magnitude at t=0

Globally, major driving covariates for our 
patient’s survival outcome  were the tumor 
shrinkage parameter and the albumin lower 
plateau 

Average importance: absolute magnitude

Directionality of the impact: sign
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Predictive & Prognostic Covariates

Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates 

BSL= baseline; TK = tumor kinetics, PD = pharmacodynamic

The Key Role of PD Biomarkers
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Predictive & Prognostic Covariates

BSL/bsl = baseline; TK/tk = tumor kinetics, PD = pharmacodynamic, bnlr = baseline 
neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate, rbc = red blood cells, ldh = lactate 
dehydrogenase,  KS = shrinkage rate, KG = regrowth rate, S0 = magnitude at t=0

The Key Role of PD Biomarkers
Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates 
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Predictive & Prognostic Covariates
The Key Role of PD Biomarkers

15 covariates only from <10 clinical quantities

BSL/bsl = baseline; TK/tk = tumor kinetics, PD = pharmacodynamic, bnlr = baseline 
neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate, rbc = red blood cells, ldh = lactate 
dehydrogenase,  KS = shrinkage rate, KG = regrowth rate, S0 = magnitude at t=0

Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates 
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Individuals Aggregation toward Study-level Insights
Mitigating confounders for causal treatment effect

Clinical development teams are interested in Mono vs Combo and Combo 1 vs Combo 2 scenarios. 

To predict causal treatment effect in these (likely) non-randomized scenarios, baseline confounders (ONLY) must be mitigated.

Matching patients with their “twins” of the other arm
→ propensity score matching analysis 

d1n
d11

dm1
dmn

Arm 2 

Ar
m

 1

Clinical meaning and Obs. vs Pred. feasible

(Limited) baseline discrepancies still present

MATCHING ANALYSIS STRATEGY
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Support to Drug Development decision-making
M

on
o 

ve
rs

us
 C

om
bo

Trends suggest an increase contribution of the 
combination partner on top of atezolizumab 
backbone as data matures

Individual Contribution Packages and Ungating of Combinations’ Next Phases
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Support to Drug Development decision-making
M

on
o 
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us
 C

om
bo

Trends suggest an increase contribution of the 
combination partner on top of atezolizumab 
backbone as data matures

Individual Contribution Packages and Ungating of Combinations’ Next Phases

C
om

bo
 1

 v
er

su
s 

C
om

bo
 2

RESTRICTED MEAN SURVIVAL 
TIME (RMST)   =   ∫  S(t) dt   →                

Horizon

Landmark

RMST ratio >> 1, the better  

*Note: in alignment with 
study results
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Reflections & Conclusions
Take-home messages 

1
2

3

Early on-treatment trends of neutrophils, albumin, and LDH complement anti-tumor 
response

Early on-treatment PD + anti-tumor trends CAN separate curves well enough to 
inform decision-making on ungating next development phase for a combination 
and supporting of regulatory individual contribution data package

As per FDA M151 and AI/ML2 guidelines, ANY model should meet 
explainability, predictivity, and trustability criteria 

1 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m15-general-principles-model-informed-drug-development 
2 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m15-general-principles-model-informed-drug-development
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological
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Ongoing work 
Limits and Project Extension

1 ACKNOWLEDGE CURRENT LIMITATIONS                    

2 OVERCOME SOME OF THEM                    

● Safety is not explicitly taken into account towards a full risk-benefit assessment
● Working assumptions on data trimming are not challenged in terms of performances
● Generalization to studies with different MoA might benefit from different PD biomarkers

● Include more specific efficacy biomarkers (ctDNA) and introduce other safety biomarkers (platelets)
● Extend the framework to meet PoC’s interim analysis scenarios, i.e., patients contribute with 

different number of observations depending on the randomization date
 

MoA = mechanism of action; PoC = proof of concept 
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Doing now what patients need next


