

A Dynamic and Machine Learning-powered Clinical Decision Support System to Enhance Patient Management: an Example from Atezolizumab in Non Small Cell Lung Cancer Patients

<u>Anna Fochesato</u>¹, François Mercier², Karla Diaz-Ordaz³, Candice Jamois¹

¹Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, Switzerland

²Genentech Clinical Pharmacology, Roche Innovation Center Basel, Switzerland

³Department of Statistical Sciences, University College London, UK

Background & Objective

Supporting Cancer Immunotherapy Landscape

In cancer immunotherapy, clinical teams quickly move to combination trials as an attempt to improve treatment response rates. This results in a plethora of combinational studies run by pharmaceutical companies.

Early readouts of peripheral pharmacodynamic (PD) biomarkers could supplement tumor assessments toward an early understanding of the disease state and a better decision-making on patient management and study prioritization.

Leveraging retrospective data on single immuno-agent, can we...

1

PRECISION MEDICINE

... predict long-term survival outcome for patients enrolled in combination trials to inform their management?

DRUG DEVELOPMENT

... predict if a new molecular entity given as a combination is likely to outperform the monotherapy? 2

Clinical Trials

Full Data Overview: from Single Agent studies to Ongoing Combinations

• DEVELOPMENT • VALIDATION • APPLICATION • A

2 years of longitudinal data

Pooled Phase II atezolizumab (ATZ) studies

- (i) BIRCH
- (ii) FIR
- (iii) POPLAR

6/12/24 weeks of longitudinal data

OAK Phase III ATZ study

6/12/24 weeks of longitudinal data

- (i) ATZ + Carboplatin + Paclitaxel
- (ii) ATZ + Carboplatin + nab-Paclitaxel
- (iii) ATZ + Bevacizumab + Carboplatin + Paclitaxel

Covariates

SOCIAL/DEMOGRAPHIC

LONGITUDINAL BIOMARKERS

sum of longest diameters + neutrophils, albumin, lactate dehydrogenase

TUMOR CHARACTERISTICS

LABORATORY VALUES

^{*} Note: same ATZ dosing regimen as in development

Technical Snapshot

Bridging Pharmacometrics and Machine Learning

EBEs = Empirical Bayes Estimates

LONGITUDINAL BIOMARKERS

Modeling choices

Pharmacometric and Machine Learning models

• PMx IN DEVELOPMENT

SLD | LDH | NEUTROPHILS

STEIN MODEL

$$f(t) = \begin{cases} S0 * (e^{KG*t}) & t < 0 \\ S0 * (e^{KG*t} + e^{-KS*t} - 1) & t \ge 0 \end{cases}$$

ALBUMIN

HYPERBOLIC FUNCTION

$$f(t) = p + e^{t} * \frac{q - p}{t + e^{t}}$$

PMx IN APPLICATION

Bayesian feedback approach for the EBEs on landmark data

6-week observations	Min	Max
# obs. TK	1	4
# obs. LDH	2	9
# obs. NEUTROPHILS	1	6
# obs. ALBUMIN	1	7

Modeling choices

Pharmacometric and Machine Learning models

PMx IN DEVELOPMENT

SLD | LDH | NEUTROPHILS

STEIN MODEL

$$f(t) = \begin{cases} S0 * (e^{KG*t}) & t < 0 \\ S0 * (e^{KG*t} + e^{-KS*t} - 1) & t \ge 0 \end{cases}$$

ALBUMIN

HYPERBOLIC FUNCTION

$$f(t) = p + e^{t} * \frac{q - p}{t + e^{t}}$$

PMx IN APPLICATION

Bayesian feedback approach for the EBEs on landmark data

6-week observations	Min	Max
# obs. TK	1	4
# obs. LDH	2	9
# obs. NEUTROPHILS	1	6
# obs. ALBUMIN	1	7

• ML IN DEVELOPMENT

RANDOM SURVIVAL FOREST

Ensemble method that averages cumulative hazard functions from survival tree predictors trained on a bootstrap data sample

Trust for High-Risk Context-of-Use

Incorporating predictive uncertainty quantification

CONFIDENCE

Inductive conformal prediction (ICP) to equip predictions with uncertainty quantification

Instead of point estimates, ICP outputs a set of possible labels - for us, {Alive}, {Death}, {Multiple}, {Empty} - that are likely to contain the true label with a user-defined confidence.

We set confidence level to 85%

 \rightarrow ~ 72% patients on average deemed evaluable

Trust for High-Risk Context-of-Use

Incorporating predictive uncertainty quantification

Inductive conformal prediction (ICP) to equip predictions with uncertainty quantification

Instead of point estimates, ICP outputs a set of possible labels - for us, {Alive}, {Death}, {Multiple}, {Empty} - that are likely to contain the true label with a user-defined confidence.

We set confidence level to 85% \rightarrow ~ 72% patients on average deemed evaluable

ACCURACY

Competitive performances were obtained, holding promises for high-risk applications

Precision Medicine Decision Tree

A Clinical Decision Support to assist Oncologists on Patient Management

Evaluation vs Monitoring

Providing a therapeutic recommendation

PATIENT EVALUATION -> TREATMENT DISCONTINUATION/ADJUSTMENT

Individual conditional dataset with 100 plausible covariate sets

SLD = Sum of Longest Diameters

Individual Risk-Factor Analysis

- Average importance: absolute magnitude
- Directionality of the impact: sign

bsl = baseline, bnlr = baseline neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate, rbc = red blood cells, ldh = lactate dehydrogenase, tk = tumor kinetic, KS = shrinkage rate, KG = regrowth rate, SO = magnitude at t=0

Individual Risk-Factor Analysis

tk_KS-

-0.10

-0.05

Average feature importance

0.00

0.05

What can we learn from Patient A signature?

- Average importance: absolute magnitude
- Directionality of the impact: sign

Globally, major driving covariates for our patient's survival outcome were the tumor shrinkage parameter and the albumin lower plateau

bsl = baseline, bnlr = baseline neutrophils-to-lymphocyte ratio, hgb = hemoglobin, hr = heart rate, rbc = red blood cells, ldh = lactate dehydrogenase, tk = tumor kinetic, KS = shrinkage rate, KG = regrowth rate, SO = magnitude at t=0

Predictive & Prognostic Covariates

The Key Role of PD Biomarkers

Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates

Predictive & Prognostic Covariates

The Key Role of PD Biomarkers

Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates

Relative importance of the key covariates

Predictive & Prognostic Covariates

The Key Role of PD Biomarkers

Peripheral PD biomarker readouts bring additional predictive value on top of tumor kinetics and baseline covariates

Relative importance of the key covariates

Individuals Aggregation toward Study-level Insights

Mitigating confounders for causal treatment effect

Clinical development teams are interested in *Mono vs Combo* and *Combo 1 vs Combo 2* scenarios.

To predict causal treatment effect in these (likely) non-randomized scenarios, baseline confounders (ONLY) must be mitigated.

Support to Drug Development decision-making

Individual Contribution Packages and Ungating of Combinations' Next Phases

Mono versus Combo

Trends suggest an increase contribution of the combination partner on top of atezolizumab backbone as data matures

Support to Drug Development decision-making

Individual Contribution Packages and Ungating of Combinations' Next Phases

Mono versus Combo

>

Trends suggest an increase contribution of the combination partner on top of atezolizumab backbone as data matures

Reflections & Conclusions

Take-home messages

Early on-treatment trends of neutrophils, albumin, and LDH complement anti-tumor response

Early on-treatment PD + anti-tumor trends CAN separate curves well enough to inform decision-making on ungating next development phase for a combination and supporting of regulatory individual contribution data package

As per FDA M15¹ and AI/ML² guidelines, ANY model should meet explainability, predictivity, and trustability criteria

¹ https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m15-general-principles-model-informed-drug-development

² https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological

Ongoing work

Limits and Project Extension

ACKNOWLEDGE CURRENT LIMITATIONS

- Safety is not explicitly taken into account towards a full risk-benefit assessment
- Working assumptions on data trimming are not challenged in terms of performances
- Generalization to studies with different MoA might benefit from different PD biomarkers

OVERCOME SOME OF THEM

- Include more specific efficacy biomarkers (ctDNA) and introduce other safety biomarkers (platelets)
- Extend the framework to meet PoC's interim analysis scenarios, *i.e.*, patients contribute with different number of observations depending on the randomization date

MoA = mechanism of action; PoC = proof of concept

Acknowledgement

The D-Light Team

Doing now what patients need next