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Generative AI
Generative AI has grown 
rapidly in the last few 
years.

1

Machine Learning and Artificial Intelligence (AI)

2

αHow powerful is Generative AI?

Generative AI is very powerful — and 
it's getting stronger fast, growing at 
an unprecedented pace that's 
transforming entire industries in real 
time.
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Variational Autoencoder
Bayesian framework 
within generative AI.
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α
∼N(μ, LL⊤)

μ

L
zEncoder Decoder=
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AlphaFold
VAE that predicts 3D 
structure of proteins from 
their amino acid sequence
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Highly accurate protein structure prediction 
with AlphaFold

John Jumper1,4 ✉, Richard Evans1,4, Alexander Pritzel1,4, Tim Green1,4, Michael Figurnov1,4, 
Olaf Ronneberger1,4, Kathryn Tunyasuvunakool1,4, Russ Bates1,4, Augustin Žídek1,4, 
Anna Potapenko1,4, Alex Bridgland1,4, Clemens Meyer1,4, Simon A. A. Kohl1,4, 
Andrew J. Ballard1,4, Andrew Cowie1,4, Bernardino Romera-Paredes1,4, Stanislav Nikolov1,4, 
Rishub Jain1,4, Jonas Adler1, Trevor Back1, Stig Petersen1, David Reiman1, Ellen Clancy1, 
Michal Zielinski1, Martin Steinegger2,3, Michalina Pacholska1, Tamas Berghammer1, 
Sebastian Bodenstein1, David Silver1, Oriol Vinyals1, Andrew W. Senior1, Koray Kavukcuoglu1, 
Pushmeet Kohli1 & Demis Hassabis1,4 ✉

Proteins are essential to life, and understanding their structure can facilitate a 
mechanistic understanding of their function. Through an enormous experimental 
e!ort1–4, the structures of around 100,000 unique proteins have been determined5, but 
this represents a small fraction of the billions of known protein sequences6,7. Structural 
coverage is bottlenecked by the months to years of painstaking e!ort required to 
determine a single protein structure. Accurate computational approaches are needed 
to address this gap and to enable large-scale structural bioinformatics. Predicting the 
three-dimensional structure that a protein will adopt based solely on its amino acid 
sequence—the structure prediction component of the ‘protein folding problem’8—has 
been an important open research problem for more than 50 years9. Despite recent 
progress10–14, existing methods fall far short of atomic accuracy, especially when no 
homologous structure is available. Here we provide the #rst computational method 
that can regularly predict protein structures with atomic accuracy even in cases in which 
no similar structure is known. We validated an entirely redesigned version of our neural 
network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein 
Structure Prediction (CASP14)15, demonstrating accuracy competitive with 
experimental structures in a majority of cases and greatly outperforming other 
methods. Underpinning the latest version of AlphaFold is a novel machine learning 
approach that incorporates physical and biological knowledge about protein structure, 
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

The development of computational methods to predict 
three-dimensional (3D) protein structures from the protein sequence 
has proceeded along two complementary paths that focus on either the 
physical interactions or the evolutionary history. The physical interac-
tion programme heavily integrates our understanding of molecular 
driving forces into either thermodynamic or kinetic simulation of pro-
tein physics16 or statistical approximations thereof17. Although theoreti-
cally very appealing, this approach has proved highly challenging for 
even moderate-sized proteins due to the computational intractability 
of molecular simulation, the context dependence of protein stability 
and the difficulty of producing sufficiently accurate models of protein 
physics. The evolutionary programme has provided an alternative in 
recent years, in which the constraints on protein structure are derived 
from bioinformatics analysis of the evolutionary history of proteins, 
homology to solved structures18,19 and pairwise evolutionary correla-
tions20–24. This bioinformatics approach has benefited greatly from 

the steady growth of experimental protein structures deposited in 
the Protein Data Bank (PDB)5, the explosion of genomic sequencing 
and the rapid development of deep learning techniques to interpret 
these correlations. Despite these advances, contemporary physical 
and evolutionary-history-based approaches produce predictions that 
are far short of experimental accuracy in the majority of cases in which 
a close homologue has not been solved experimentally and this has 
limited their utility for many biological applications.

In this study, we develop the first, to our knowledge, computational 
approach capable of predicting protein structures to near experimental 
accuracy in a majority of cases. The neural network AlphaFold that we 
developed was entered into the CASP14 assessment (May–July 2020; 
entered under the team name ‘AlphaFold2’ and a completely different 
model from our CASP13 AlphaFold system10). The CASP assessment is 
carried out biennially using recently solved structures that have not 
been deposited in the PDB or publicly disclosed so that it is a blind test 
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α

Non-linear Mixed Effects (NLME) Modeling

Structural Model and Observations

d
dt

yi(t) = f(t, yi(t), ϕi),

Population Approach 

Population fit
Maximize the Log-Likelihood  with respect to .log p(x) (zpop, β, Ω, a)ℒℒ

AI

yi(0) = yi,0 .

h(ϕi) = zi, zi = z𝗉𝗈𝗉 + βci + ηi

Consider  subjects, for : N i ∈ {1,...,N}

Observations:

ηi ∼ 𝒩(0,Ω) .withβ

f

xij = g(yi(tij), ϕi) + ϵij, ϵ ∼ 𝒩(0,a2) .

Bayesian Framework within AI: Variational Autoencoder
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α

Variational Autoencoders in NLME Modeling

1. Encode the data of Individual i
The encoder is parametrized by a Long Short-Term Memory 
(LSTM) neural network. 

(μi, Li) = LSTM(xi, ci), for i = 1,...,N

∼N(μ, L L⊤)
μ

L
zEncoder Decoder=

μi

Li
zi

Data LSTM Encoder Distribution of individual  
Parameters

∼

N(μi, LiL⊤
i )

xi(t)
ci = 'Female'
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α

Variational Autoencoders in NLME Modeling

2. Decode individual Parameter  by 
solving the Model

zi

The decoder takes the individual parameter  
and solves the model equations.

zi

zi Solve structural model

Individual 
Parameters Fit

̂xi(t)

∼N(μ, L L⊤)
μ

L
zEncoder Decoder=
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α

Variational Autoencoders in NLME Modeling

3. Maximize the Evidence Lower Bound (ELBO) Loss function

ℒELBO
ψ (x) =

N

∑
i=1

𝔼zi∼qψ(⋅|xi)[log p(xi |zi)] −
N

∑
i=1

DKL(qψ(zi |xi) ∣ ∣ p(zi))

x ̂x∼N(μ, LL⊤)
μ

L
zEncoder Decoder=
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Theophylline - Example

Consider a population of  patients. N = 12

Figure: Theophyilline Data Set by Boeckmann, A. J., Sheiner et al. 
(1994). NONMEM Users Guide: Part V., University of California, San 
Francisco. 

C(t) =
Dka

V(ka − ke)
(e−ket − e−kat)

Linear 1-compartment PK model with 
absorption. 

  
The model is given by:   

Log-Normal distribution: 

ka,i = ka,pop ⋅ eηka,i,
ke,i = ke,pop ⋅ eηke,i .
Vi = Vpop ⋅ eηV,i,

ModelData
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VAE produces Parameter Estimates consistent with SAEM

VAE SAEM
Fixed Effects

1.60 1.61
0.085 0.085
32.00 31.98

Variance
0.57 0.63
0.15 0.15
0.14 0.15

Error Model
0.72 0.73

Stat. Criteria
338.9 338.6

Table: Theophylline Model results

ka,pop

ke,pop

Vpop

ωka

ωke

ωV

a

−2ℒℒ

Figure: Convergence of the VAE.
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Covariate Selection

zi = z𝗉𝗈𝗉+βci+ηi,

ηi ∼ 𝒩(0,Ω) .

Prior

βV

βka

β3
βke

βkout

βW0
β0

βa

Which covariates  
should I choose?

ci
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zi = z𝗉𝗈𝗉+βci+ηi,

ηi ∼ 𝒩(0,Ω) .

Prior

βV

βka

β3
βke

βkout

βW0
β0

βa

Standard

• SAEM + Selection Tools, i.e. 
SAMBA, COSSAC, SCM, etc. 

• SAEM solves NLME problems for a 
fixed choice of covariates. 

• BICc is computed afterwards: 

-  number of covariates, 
-  subjects. 

• Iteratively multiple runs.

k
N

−2ℒℒ(x) + log(N )k

Covariate Selection
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zi = z𝗉𝗈𝗉+βci+ηi,

ηi ∼ 𝒩(0,Ω) .

Prior

βV

βka

β3
βke

βkout

βW0
β0

βa

Standard

• SAEM + Selection Tools, i.e. 
SAMBA, COSSAC, SCM, etc. 

• SAEM solves NLME problems for a 
fixed choice of covariates. 

• BICc is computed afterwards: 

-  number of covariates, 
-  subjects. 

• Iteratively multiple runs.

k
N

−2ℒℒ(x) + log(N )k

Covariate Selection - Dream
Is it really necessary to 
solve the NLME problem 
multiple times?

Can we estimate parameters 
and select covariates 
simultaneously in one run?

Why not use the AI 
power of the VAE for 
covariate selection?
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Using VAEs, we can offer determination of 
population parameters and select 
covariates all at ones.  

One Run is all you need.
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βV

βka

β3
βke

βkout

β0

βa

Model family 
 (all possible covariate 

combinations)

Selected Model 
 (Active covariates)

β1, . . . , βn

β2, β8, β20

log(N )∥β∥0

Simultaneously determination of Population Parameters  
and Covariates 

1. Initialization: Model family,  vector of covariate effects. 
Number of active covariates: .

β
∥β∥0 = #{i, βi ≠ 0}

2. Optimize the BICc-ELBO: 

z(k+1)
pop , β(k+1) = arg max

z (k)
pop,β(k)

{2ℒELBO
ψ (x) + log(N )∥β(k)∥0}

Analyze a family of models. 

One run is all you need. 
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α

Weight of Neonates - Example

Consider a population of  patients. N = 2425

Figure: Neonates Dataset by Wilbaux M., Kasser S., Gromann J. et al. 
(2019). Personalized Weight Change Prediction in the First Week of Life. 
Clin Nutr. 38(2):689-696.

ModelData

d
dt

W(t) = kprod(t) − kel(t)W(t), for (t, T ], W(0) = W0

The model is given by 

where 

Five Parameters  log-
normally distributed.  

Five covariates ( ) 
=>  possible covariate model combinations. 

(kin, kout, T50, Tlag, W0)

Sex, DelM, GA, Mage, Para2
225

kprod(t) =
kin

1 + exp(−2(t − Tlag)) kel(t) = kout (1 −
t

T50 + t ) .and
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α

All at Once: Populations Parameters and Covariate Selection

In every iteration the population parameters and covariate model are updated.

Population Parameters
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α

Figure: Convergence of the Covariates of .Tlag

Inactive Covariates Active Covariates

All at Once: Populations Parameters and Covariate Selection

In every iteration the population parameters and covariate model are updated.

Population Parameters 
+ 

Covariate Model



Jan RohleffRedefining Parameter Estimation and Covariate Selection via Variational Autoencoders05.06.202512

α

VAE Convergence - Covariates

Figure: Convergence of the Covariates.
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α

Neonates - Selected Covariates
VAE COSSAC SAMBA SCM

146154 146132 146177 146123
BICc 146351 146329 146374 146305

Table: Statistic Criteria for the VAE, COSSAC, SAMBA and SCM Covariates Selection.

Table: Selected Covariates for the VAE, COSSAC, SAMBA and SCM.

VAE

COSSAC

SAMBA

SCM

W0
kin

Tlag

kout

T50

βsex βDelM βGAexact βMage βPara2

All

−2ℒℒ
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α

Neonates - Selected Covariates
VAE COSSAC SAMBA SCM

146154 146132 146177 146123
BICc 146351 146329 146374 146305
Runs 1 33 2 244

Table: Statistic Criteria for the VAE, COSSAC, SAMBA and SCM Covariates Selection.

−2ℒℒ

Table: Selected Covariates for the VAE, COSSAC, SAMBA and SCM.

VAE

COSSAC

SAMBA

SCM

W0
kin

Tlag

kout

T50

βsex βDelM βGAexact βMage βPara2

All
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Conclusion

Analysis of complex covariates

Totally or partially unknown ODE 
Models

Automated Modeling

Simultaneously Parameter 
Estimation + automated Covariate 
Selection

VAE-based NLME framework in 
Python

zpop + β

Generative AI NLME ModelingVAEs

Present Future

Prediction of parameters of new 
individuals

zi
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