Modelling the efficacy of antiviral strategies of SARS-CoV-2 in a context of emerging variants: from hospitalized patients to general community

Maxime Beaulieu

Université Paris Cité and Université Paris Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France

Wednesday 4 June 2025

The COVID-19 pandemic – a changing landscape

From early 2021, the epidemic as been affected by:

- a strong vaccination campaign,
- and the emergence of variants of concerns (VoCs)

Vaccination rate in France since 2021 ¹

Successive waves of VoCs in France since 2021 ²

¹ datavaccin-covid.ameli.fr (2023) ² N. Berrod, data from Santé publique France (2022)

The COVID-19 pandemic – a changing landscape

From early 2021, the epidemic as been affected by:

- a strong vaccination campaign,
- and the emergence of variants of concerns (VoCs)

Modified the **severity** and **transmission** of the virus

Vaccination rate in France since 2021 ¹

Successive waves of VoCs in France since 2021 2

¹ datavaccin-covid.ameli.fr (2023) ² N. Berrod, data from Santé publique France (2022)

Antiviral treatments impacted by the changing landscape

- Variant of concerns could also modify the treatments efficacy
- Particularly the neutralizing monoclonal antibodies (mAbs) → sensitive to the variant of infection
- Reduce the risk of severe disease if administred early after symptom onset 3.4.5

³ Gottlieb et al. *JAMA* (2021)

⁴ Weinreich et al. NEJM (2021)

⁵ Weinreich et al, NEJM (2021)

⁶ Forte-Soto et al, *J. Infect. Dis.* (2022)

⁷ Bruel et al. Nat. Med. (2022)

⁸ FDA, Suspension of use of Evusheld (2023)

Antiviral treatments impacted by the changing landscape

- Variant of concerns could also modify the treatments efficacy
- Particularly the neutralizing monoclonal antibodies (mAbs) → sensitive to the variant of infection
- Reduce the risk of severe disease if administred early after symptom onset 3.4.5

Evusheld (AZD7442)

- Combination of Tixagevimab (AZD8895) and Cilgavimab (AZD1061)⁶
- FDA approved in pre-exposure prophylaxis in fragile population
- In vitro loss of efficacy against Omicron 7
- Use was progressively suspended⁸

³ Gottlieb et al, *JAMA* (2021)

⁴ Weinreich et al. NEJM (2021)

⁵ Weinreich et al. NEJM (2021)

⁶ Forte-Soto et al, *J. Infect. Dis.* (2022)

⁷ Bruel et al. Nat. Med. (2022)

⁸ FDA, Suspension of use of Evusheld (2023)

Antiviral treatments impacted by the changing landscape

- Variant of concerns could also modify the treatments efficacy
- Particularly the neutralizing monoclonal antibodies (mAbs) → sensitive to the variant of infection
- Reduce the risk of severe disease if administred early after symptom onset 3.4.5

Evusheld (AZD7442)

- Combination of Tixagevimab (AZD8895) and Cilgavimab (AZD1061)⁶
- FDA approved in pre-exposure prophylaxis in fragile population
- In vitro loss of efficacy against Omicron ⁷
- Use was progressively suspended 8

What is the impact of the variants on the efficacy of these mAbs *in vivo*?

³ Gottlieb et al, JAMA (2021)

⁴ Weinreich et al. NEJM (2021)

⁵ Weinreich et al, NEJM (2021)

⁶ Forte-Soto et al, *J. Infect. Dis.* (2022)

⁷ Bruel et al. Nat. Med. (2022)

⁸ FDA, Suspension of use of Evusheld (2023)

Evaluation of antiviral efficacy of mAbs in a context of changing landscape

- Analyze in vivo data from hospitalized patients
 - Heterogeneous population 9,10 :
 - Different immune status (vaccination, prior infection, immunocompromised...)
 - Patients are treated at different stages of the disease
 - Patients arrive at late stage of the disease (lower viral load)
- → The relevance of modeling by integrating:
 - virological,
 - immunological,
 - and pharmacological data

¹⁰ Néant et al, *PNAS* (2021)

⁹ Lingas et al, *J Antimicrob Chemother.* (2022)

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 11,12
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) > Potential selection bias

¹¹ Puhach et al, Nat. Rev. Microbiol (2023)

¹² Yang et al, The Lancet Microbe (2023)

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 11,12
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) > Potential selection bias
- → Analyzing millions of PCR tests performed in community labs

324,428 individuals (**407,375** obs) with:

- Date of symptom onset,
- Vaccination status,
- **Variant** of infection

¹² Yang et al, *The Lancet Microbe* (2023)

Maxime BEAULIEU PAGE 2025 4 June 2025

Study the impact of this changing landscape on viral dynamics in the population

- Variant of infection and patient characteristics may also shape the viral dynamics 11,12
 - Studies often conducted on small specific cohorts (symptomatic, commorbidities...) → Potential selection bias
- → Analyzing millions of PCR tests performed in community labs

324,428 individuals (**407,375** obs) with:

- Date of symptom onset,
- Vaccination status,
- Variant of infection

Can we model the community labs tests to identify patterns in viral load?

Various viral load dynamics models for use in different contexts

Semi-mechanistic models

→ Identify how biological parameters are impacted by variants and vaccination

Various viral load dynamics models for use in different contexts

Semi-mechanistic models

→ Identify how biological parameters are impacted by variants and vaccination

Empirical models

→ Identify how viral dynamics patterns are impacted by variants and vaccination

Objectives of the studies

Objective 1

Using a semi-mechanistic model to reconstruct viral load dynamics, evaluate the virological effect of Evusheld on hospitalized patients in the DisCoVeRy clinical trial.

Objective 2

Using simulations inspired by data collected in community labs, study the feasibility of an empirical model for identifying patterns in viral load.

Evaluating Evusheld in hospitalized patients

- European **phase III randomized clinical trial** (PI : F. Ader methodologist : F. Mentré) ¹³
- > 200 patients (2021-2022) in Evusheld or Placebo arms
- Underpowered due to premature interruption of inclusions

What is the *in vivo* virological effect of Evusheld?

¹³ Hites et al, *J. Infect.* (2024)

Large heterogeneity in neutralization activity and viral load

¹⁴ Beaulieu et al, *J Antimicrob Chemother.* (2024)

Large heterogeneity in neutralization activity and viral load

Target cell limited model ¹⁵

¹⁵ Phan et al, *PLoS Pathog.* (2024)

Target cell limited model ¹⁵

Sigmoid **Gompertz function** to model the **neutralization activity** ^{16,17}

$$ED_{50}(t) = \begin{cases} \overline{ED}_{50} \times e^{e^{-g \times (t-\tau)}}, \quad t \leq t_{\chi} \end{cases}$$

With t_x the Evusheld treatment initialization

Target cell limited model ¹⁵

¹⁷ Forte-Soto et al, , J. Infect. Dis. (2022)

Sigmoid **Gompertz function** to model the **neutralization activity** ^{16,17}

$$ED_{50}(t) = \begin{cases} \overline{ED}_{50} \times e^{e^{-g \times (t-\tau)}}, & t \leq t_{\chi} \\ \overline{ED}_{50} \times e^{e^{-g \times (t-\tau)}} + \mathbf{D}, & t > t_{\chi} \end{cases}$$

With t_x the Evusheld treatment initialization

Parameters estimation

Covariates association	Parameter	Estimate (RSE in %)	SD of the random effect ω (RSE in %)
	$\overline{ED}_{50\{Unvaccinated\}}$ (ED_{50})	1501 (46)	1.74 (8)
 Using COSSAC algorithm 	$\overline{ED}_{50\{Fully\ vaccinated\}}$ (ED $_{50}$)	6272 (23)	1.74 (8)
 Baseline characteristics (Wald test, P < 0.05) 	g	0.14 (16)	0.24 (20)
• Sex	au (days)	22.26 (9)	0.10 (fixed)
• Age	$D_{\{Pre-Omicron\}}$ (ED $_{50}$)	5956 (12)	0.68 (18)
 Clinical status at inclusion (score) Vaccination status Variant of infection 	$D_{\{Omicron\ BA.1\}}$ (ED $_{50}$)	263 (36)	0.68 (18)
	$D_{\{Omicron\ BA.2\}}$ (ED $_{50}$)	4325 (17)	0.68 (18)
	R_0	4.51 (21)	0.73 (6)
	$p~(10^7 { m virus~cells^{-1}~day^{-1}})$	2.86 (47)	-
	δ (day $^{-1}$)	2.37 (53)	-
	$arphi$ (10 $^{-6}$ cells day $^{-1}$)	2.02 (82)	-
	$ ho$ (day $^{-1}$)	1.01 (28)	-
	k_{ON} (day $^{-1}$ ED_{50}^{-1})	0.0018 (52)	-
	σ_1 (log ₁₀ ED ₅₀)	0.43 (5)	-
Using the SAEM algorithm in Monolix Software	$\sigma_2 (log_{10}$ RNA copies/ 10^4 cells)	1.17 (4)	-

Parameters estimation

Covariates association	Parameter	Estimate (RSE in %)	SD of the random effect ω (RSE in %)
	$\overline{ED}_{50\{Unvaccinated\}}$ (ED_{50})	1501 (46)	1.74 (8)
 Using COSSAC algorithm 	$\overline{ED}_{50\{Fully\ vaccinated\}}$ (ED $_{50}$)	6272 (23)	1.74 (8)
 Baseline characteristics (Wald test, P < 0.05) 	g	0.14 (16)	0.24 (20)
• Sex	τ (days)	22.26 (9)	0.10 (fixed)
 Age Clinical status at inclusion (score) Vaccination status Variant of infection 	$D_{\{Pre-Omicron\}}$ (ED $_{50}$)	5956 (12)	0.68 (18)
	$D_{\{Omicron\ BA.1\}}$ (ED $_{50}$)	263 (36)	0.68 (18)
	$D_{\{Omicron\ BA.2\}}$ (ED $_{50}$)	4325 (17)	0.68 (18)
	R_0	4.51 (21)	0.73 (6)
	p (10 7 virus cells $^{-1}$ day $^{-1}$)	2.86 (47)	_
	δ (day $^{-1}$)	2.37 (53)	_
	$arphi$ (10 $^{-6}$ cells day $^{-1}$)	2.02 (82)	_
	$ ho$ (day $^{-1}$)	1.01 (28)	_
	k_{ON} (day $^{-1}$ ED_{50}^{-1})	0.0018 (52)	_
	$\sigma_1 (log_{10}ED_{50})$	0.43 (5)	_

Using the SAEM algorithm in Monolix Software

Maxime BEAULIEU 4 June 2025 PAGE 2025

 σ_2 (log_{10} RNA copies/ 10^4 cells)

1.17 (4)

Parameters estimation

Covariates association	Parameter	Estimate (RSE in %)	SD of the random effect ω (RSE in %)
	$\overline{ED}_{50\{Unvaccinated\}}$ (ED ₅₀)	1501 (46)	1.74 (8)
 Using COSSAC algorithm 	$\overline{ED}_{50\{Fully\ vaccinated\}}$ (ED_{50})	6272 (23)	1.74 (8)
 Baseline characteristics (Wald test, P < 0.05) 	g	0.14 (16)	0.24 (20)
• Sex	au (days)	22.26 (9)	0.10 (fixed)
• Age	$D_{\{Pre-Omicron\}}$ (ED ₅₀)	5956 (12)	0.68 (18)
 Clinical status at inclusion (score) Vaccination status Variant of infection 	$D_{\{Omicron\ BA.1\}}$ (ED $_{50}$)	263 (36)	0.68 (18)
	$D_{\{Omicron\ BA.2\}}$ (ED ₅₀)	4325 (17)	0.68 (18)
	R_0	4.51 (21)	0.73 (6)
	p (10 7 virus cells $^{-1}$ day $^{-1}$)	2.86 (47)	-
	δ (day $^{-1}$)	2.37 (53)	_
	$arphi$ (10 $^{-6}$ cells day $^{-1}$)	2.02 (82)	_
	$ ho$ (day $^{-1}$)	1.01 (28)	_
	k_{ON} (day $^{-1}$ ED_{50}^{-1})	0.0018 (52)	_
	$\sigma_1 (log_{10}ED_{50})$	0.43 (5)	_
Using the SAEM algorithm in Monolix Software	σ_2 (log_{10} RNA copies/ 10^4 cells)	1.17 (4)	-

Simulated neutralization and viral load trajectories

¹⁴ Beaulieu et al, *J Antimicrob Chemother* (2024)

Gain in time to reach viral undetectability

Median (80% PI) difference in days to reach undetectability between in silico treated patients and their own control

¹⁴ Beaulieu et al, J Antimicrob Chemother (2024)

Description of the data from community labs

Description of the data from community labs

Description of the data from community labs

Piecewise linear model to capture the viral load dynamics

We estimate 4 parameters:

Incubation period (days), T_i

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), $oldsymbol{T}_{oldsymbol{g}}$
- Viral load at peak (Ct), V_p

We estimate 4 parameters:

- Incubation period (days), T_i
- Proliferation phase (days), $oldsymbol{T}_{oldsymbol{g}}$
- Viral load at peak (Ct), V_p
- Clearance phase (days), T_c

Piecewise linear model to capture the viral load dynamics

Bayesian inference framework, HMC NUTS algorithm in Stan

Add information with prior distributions

We estimate 4 parameters:

- Incubation period (days), $T_i \sim N^+(5, 1)$
- Proliferation phase (days), $T_g \sim N^+(6,1)$
- Viral load at peak (Ct), $V_p \sim N^+(25,2)$
- Clearance phase (days), $T_c \sim N^+(15,2)$

Weakly informative prior distributions

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

Few repetead tests

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

Few repetead tests

	Inclusion criteria	Percentage of infected individuals (P_{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance

Time since symptom onset (days)

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

Few repetead tests

	Inclusion criteria	Percentage of infected individuals (P_{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance
Scenario 2	Entire population	50%	Uniform from infection to clearance

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

Few repetead tests

	Inclusion criteria	Percentage of infected individuals (P_{inf})	Timing of testing
Scenario 1	≥ 1 positive PCR	100%	Uniform from infection to clearance
Scenario 2	Entire population	50%	Uniform from infection to clearance
Scenario 3	Entire population	50%	Mostly at symptom onset

- 50 simulated datasets of 1000 individuals
- 50% of the population is infected

Few repetead tests

Discussion

Findings

- We identified an antiviral activity of a mAb on hospitalized patients by integrating neutralization activity into a viral dynamics model
- Pre-Omicron and Omicron BA.2 hospitalized patients had higher neutralization activity leading to faster viral clearance

Limitations

Evusheld is no longer used due to lack of efficacy in patients

Perspectives

 Can we find a clinical efficacy of mAbs adapted to latest VoCs in hospitalized patients?

PAGE 2025

Findings

- We identified an antiviral activity of a mAb on hospitalized patients by integrating neutralization activity into a viral dynamics model
- Pre-Omicron and Omicron BA.2 hospitalized patients had higher neutralization activity leading to faster viral clearance

Limitations

Evusheld is no longer used due to lack of efficacy in patients

Perspectives

• Can we find a clinical efficacy of mAbs adapted to latest VoCs in hospitalized patients?

Findings

 We can identify the main patterns of viral load with a piecewise linear model

Limitations

 High computation time due to Bayesian framework

Perspectives

 Impact of variant of infection and vaccination in patterns of viral load?

Acknowledgements

Jérémie Guedj (IAME)

Florence Débarre (IEES Paris, CNRS)

François Blanquart (CIRB, Collège de France)

The DisCoVeRy study group:

A. Gaymard, C. Massonnaud, N. Peiffer-Smadja,

M. Bouscambert-Duchamp, G. Carcelain, G. Lingas, F. Mentré,

F. Ader, M. Hites, P. Poignard

Biogroup team

Université Paris Cité to fund this PhD

