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QSP’s Evolving Role in Industry

Combined with Machine Learning Opens New Frontiers for Precision

Medicine

Progression in the number of annual
QSP publications/supported FDA submissions*
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Integrating multi-omics datasets with QSP

Omics

* Large-scale datasets
capturing structure and
function of bological
system

“Patient-specific multi-omics dataset when
integrated with QSP models can improve the
generation of virtual patient cohorts/digital twin
with personalised pharmacokinetics and treatment
effect that accurately represent real patients.”!

development. Journal of Pharmacokinetics and Pharmacodynamics, 51(5). And Bai, J. P., Wang, J.,

y for Rare Disease Drug Development. Journa?of Pharmaceutical Sciences, 112(9), 2313-2320.
2024). Leveraging multi-omics data to empower quantitative systems pharmacology in immuno-oncology. Briefings in Bioinformatics, 25(3).
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Understanding inter-individual variability of response
Statistical analysis of clinical data

The data Data-driven sparse models
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However, every dataset results in different data-driven
sparse model.
Which model to choose for the next analysis?

[1] Hamberg, a-K., Dahl, M.-L., Barban, M., Scordo, M. G., Wadelius, M., Pengo, V., ... Jonsson, E. N. (2007). A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on
individualization of warfarin therapy. Clinical Pharmacology and Therapeutics, 81(4), 529-538. https://doi.org/10.1038/sj.clpt.6100084

[2] The Pitfalls of Warfarin Dosing Using Different Pharmacodynamic Models: A Comparison of Two Different Warfarin Pharmacodynamic Models With Divergent Results. (n.d.), 1-30.
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Aim:
Leverage the knowledge in

systems pharmacology models
in statistical analysis




Leveraging the knowledge in system pharmacology

models
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Knowledge on
covariates included in
system pharmacology

model
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Leverage knowledge to
derive theoretically-
justified effective
models including
relevant covariates
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Full complexity not
relevant — rather need
to identify important

parts



Method Selection for Reduced Models:
Which Approach Yields the Desired Outcome?

Methods without
state-space transformation

State-space
transforming methods

Reduce states
individually

Reduce state-space
via transformation

Remove Simplify
(Meglecting states) (Timescale Hparatmn}
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Index Analysis:
Understanding what is important

PLOS COMPUTATIONAL BIOLOGY

Journal of Pharmacokinetics and Pharmacodynamics
https://doi.org/10.1007/510928-017-9561-x
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Understanding and reducing complex systems pharmacology models EGFR signalling pathway
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Index Analysis-guided model order reduction

Ir/nir

Env, Pss

Pneg, Cneg

Input-response

State classificiation

State classification

Assess dynamic importance
of state

Classification based on time
scale seperation

Classification of states with
negligible impact on the
output

How relevant is a state for the
input-output relationship?

Can we simplify this state by an
algebraic equation?

Can this state be ignored?
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Small example — parallel pathways
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normalised ir-index
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Input-response indices
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Indices reveal appropriate reduction method
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Indices guide the model order reduction
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Large-scale QSP model —the blood coagulation network
Brown snake envenomation
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The input-response indices in action
Brown snake venom effect on Fibrinogen

X | | o | Demonstrates
AVenom Fg how the signal

AVenom
CVenom |1 moves through
ﬂ j the network!

Let’s combine
this with the
graphical
illustration of the
model!

normalised ir-index
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Understanding Signal Propagation and Key Molecular Players
VIa Irlmut—Relsponsle Index
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Theoretical Models for Optimizing
Warfarin Therapy
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ARTICLE

Deriving mechanism-based pharmacodynamic models
by reducing quantitative systems pharmacology models:
An application to warfarin

Undine Falkenhagen*© | Jane Knichel'® | Charlotte Kloft® | Wilhelm Huisinga'
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W) Check for updates

ARTICLE

Leveraging QSP Models for MIPD: A Case
Study for Warfarin/INR

Undine };'a.ll{c',r'.lha1§t:n]‘2 , Larisa H. Cavallari® ® , Julio D. Duarte® @, Charlotte Kloft* ©,
Stephan Schmide’ ® and Wilhelm Huisinga™™

Warfarin dosing remains challenging due to substantial inter-individual variability, which can lead to unsafe or
ineffective therapy with standard dosing. Model-informed precision dosing (MIPD) can help individualize warfarin
dosing, requiring the selection of a suitable model. For models developed from clinical data, the dependence on the
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Resulting Theoretical Model Size Allows
Statistical Analysis of Clinical Data

Modelling Warfarin Therapy (2x60 ODEs)

Theoretically justified models
In vivo In vitro
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