

A new PKPD modelling approach allowing a granular Exposure-Response analysis

Mats Karlsson & Divya Brundavanam

Dept of Pharmacy, Uppsala University, Uppsala, Sweden

Exposure Response (ER) analysis = PKPD Modelling

- ER analyses are often instrumental in
 - deciding dosing strategy (dose, frequency)
 - planning or performing dose individualisation based on
 - covariate (a priori)
 - response (a posteriori)
 - drug concentration (a posteriori; "TDM")
 - extrapolation

• ...

Two standard ER assumptions

"Concentration has a causal effect on response"

"Changes in response are independent of the reasons for change in concentration"

No justification is typically given for why these assumptions would hold **No available systematic strategy** for such assessments?

Here, we introduce the "Partitioned effect" model, which can form the basis for such a strategy

Exposure – response (PKPD) models

$$C = \frac{R_{inf}}{CL}$$

$$Effect = \frac{E_{max} * C}{C_{50} + C}$$

Separating concentration components

$$C_{dose} = \frac{R_{inf}}{\theta_{CL}}$$

$$C_{cov} = \frac{R_{inf}}{\theta_{CL} e^{\theta_{cov}(COV - \overline{COV})}}$$

$$C = \frac{R_{inf}}{\theta_{CL} e^{\theta_{cov}(COV - \overline{COV}) + \eta_{CL}}}$$

Partitioned Effect (PE) model

$$Effect = \frac{E_{max,dose} * C_{dose}}{C_{50,dose} + C_{dose}} +$$

dose

$$\left[\frac{E_{max,cov}*C_{cov}}{C_{50,cov}+C_{cov}} - \frac{E_{max,cov}*C_{dose}}{C_{50,cov}+C_{dose}}\right] +$$

covariate

$$\left[\frac{E_{max,re} * C}{C_{50,re} + C} - \frac{E_{max,re} * C_{cov}}{C_{50,re} + C_{cov}}\right]$$

random effects

Instrumental variable

An instrumental variable can be used to estimate causal effects in observational data given that it fulfills three conditions:

- i. Relevance assumption: it has a causal effect on exposure
- ii. Exclusion restriction: it is related to the response only through exposure
- iii. Exchangeability assumption: it doesn't share common causes with response

For ER analysis, randomised dose can act as an instrumental variable

Design for 6 simulation scenarios

Constant rate infusion at steady state

Randomized R_{inf}: 1 or 2 units/time

 $N_{\text{subjects}} = 100 / \text{arm}$

2 PK and 2 PD obs/subj

N_{replicate trials}=500

Parameter values:

$$CL = \theta_{CL} e^{\eta_{CL}}$$
 ; $C_{50} = \theta_{C50} e^{\eta_{C50}}$; $E_{max} = \theta_{Emax}$

$$\theta_{CL} = 1$$
; $\theta_{C50} = 1$; $\theta_{Emax} = 1$

$$\omega_{CL}^2 = 0.09$$
; $\omega_{C50}^2 = 0.09$, $\sigma^2 = 0.01$

Preliminary conclusions

 $E_{max.dose}$, $C_{50,dose}$ This is our best estimate of the causal ER relation.

 $E_{max,cov}$, $C_{50,cov}$ If different from the above, add PK covariates to the PD model

 $E_{max,re}$, $C_{50.re}$

These parameters should guide TDM. Check precision and agreement with causal relation

Concentration-based individualisation (TDM)

Dose / Correct dose

Final comments

- Assumptions of ER causality and independence of origin of concentration variability are often testable based on data. The Partitioned Effect model is a way to do this.
- Individualization strategies are sensitive to violations of causality and independence assumptions
- Sensitivity of other drug development decisions to assumption violations have not been explored
- For a survey of recently published ER analyses, see poster 11474

Acknowledgments

INVENTS has received funding from the European Union's Horizon Europe Research and Innovation programme under grant agreement 101136365.

Population approach research groups at the Dept of Pharmacy

Thank you!

Partitioned Effect (PE) model

Partitioning of:

$$Effect = \frac{E_{max,dose} * C_{dose}}{C_{50,dose} + C_{dose}} +$$

dose

$$\left[\frac{E_{max,re} * C}{C_{50,re} + C} - \frac{E_{max,re} * C_{dose}}{C_{50,re} + C_{dose}}\right]$$

random effects