

Mechanistic Modeling of Joint Circulating Cell-free DNA Concentration—Tumor Size Kinetics under Immune-Checkpoint Inhibitors in Advanced Cancer

L. Nguyen Phuong, F. Fina, R. Zakrajsek, L. Della Negra, P. Tomasini, J.-L. Deville, L. Greillier, C.

Gaudy-Marqueste, A. Boutonnet, F. Ginot, J.-C. Garcia, S. Salas, S. Benzekry

Gize Cell-free DNA mmunotherapy Gignature Monitoring

Immunotherapy in oncology: how to predict progression?

2011+: FDA approval of immune-checkpoint inhibitors (ICI) targeting PD-1)

20-40 % long-term response¹

PREDICTING PROGRESSION?

<u>Gold standard biomarkers</u>: PD-L1 expression (+ TMB)

New biomarker: liquid biopsy² → Circulating cell-free DNA (cfDNA)

Half-life: 15min-2h

¹Gilberto De Castro et al., J Clin Oncol, 2022; Sharma et al., Cell, 2017

Non-invasive

Systemic

CfDNA size profile as a promising biological marker

- Independent of genome position
- No need of prior DNA extraction
- \triangleright Only needs 1 μ L of plasma
- Cost-effective ~ 15€/sample
- ➤ 2 bp accuracy on fragments sizes

Size Cell-free DNA Immunotherapy Signature Monitoring

Develop a mechanistic model of the joint cfDNA – tumor kinetics (TK) in advanced cancer patients undergoing ICI

Assess pre-treatment cfDNA size profiles and early, on-treatment, model-based parameters as predictors of immunotherapy resistance

SChISM: Size CfDNA Immunotherapy Signature Response

• Outcomes:

- Early progression (EP)
- Progression-free survival (PFS)

SChISM: Size CfDNA Immunotherapy Signature Response

Clinical variables

Age, tumor type, sex, Eastern Cooperative Oncology Group (ECOG)

Biological variables

Neutrophil to lymphocyte ratio (*NLR*)

Lactate dehydrogenase level (*LDH*)

CfDNA variables

Total concentration (pg/ μ l) C_{TOT} Location of the peaks (bp) P_1 , P_2 Height of the peaks (pg/ μ l) HP_1 , HP_2 Half-width of first peak HW_1 Absolute concentrations (pg/ μ l): $C_{a \rightarrow b}$ Relative concentrations $R_{a \rightarrow b}$ (over C_{TOT})

High proportion of long fragments at baseline is associated with response

Patients cluster according to their fragment size distribution

Short and long fragments showed different kinetics

Short and long fragments showed different kinetics

Joint modeling of tumor and size-dependent cfDNA kinetics

- 1. Tumor cells (Sum of Largest Diameters, SLD, T) comprise two subpopulations: treatment-resistant cells T_R and treatment-sensitive T_S ones.
- 2. Short fragments D_S 540-75) bp) are proportionally released through:
 - T growth, through active secretion during proliferation
 - T_S death through apoptosis
- 3. Long fragments D_L 1650-540) bp) are proportionally released through:
 - T growth, through active secretion and/or necrosis of the tumor microenvironment
 - T_S death through necrosis
- 4. CfDNA is **cleared** from the circulation by liver and kidneys, **depending on** fragment size $f_s(D_s)$, $f_l(D_l)$.

$$\begin{cases} \frac{dT_R}{dt} = \alpha \cdot T_R \\ \frac{dT_S}{dt} = \begin{cases} \alpha \cdot T_S & \text{if } t < 0 \\ (\alpha - \beta) \cdot T_S & \text{if } t \ge 0 \end{cases} \\ T = T_R + T_S \\ \frac{dD_S}{dt} = \lambda_S \cdot (\alpha \cdot T + \beta \cdot T_S) - f_S(D_S) \\ \frac{dD_l}{dt} = \lambda_l \cdot (\alpha \cdot T + \beta \cdot T_S) - f_l(D_l) \end{cases}$$

Initial conditions:

$$\begin{cases} T_{S}(t=0) = T_{S_{0}} \\ T_{R}(t=0) = T_{R_{0}} \\ D_{S}(t=0) = D_{S_{0}} \\ D_{L}(t=0) = D_{L_{0}} \end{cases}$$

Population approach

Non-linear mixed-effects

$$\begin{aligned} \theta &= \left\{ T_{R_0}, T_{S_0}, \alpha, \beta, D_{S_0}, \lambda_s, k_{D_s}, D_{l_0}, \lambda_l, k_{D_l} \right\} \\ \forall \theta_k &\in \theta, \log(\theta_k) \sim \mathcal{N}\left(\log\left(\theta_{kpop}\right), \omega_{\theta_k}^2 \right) \end{aligned}$$

1) Tumor size parameter identification independently of the cfDNA data

Tumor error model: constant

2) Joint tumor—cfDNA parameters identification with tumor population parameters fixed

cfDNA error models: proportional

Number of samples per patient				
	median (min-max)			
Tumor imaging	2 (1—10)			
cfDNA samples	7 (1—20)			

Best clearance function: linear

$$\begin{cases} \frac{dD_s}{dt} = \lambda_s \cdot (\alpha \cdot T + \beta \cdot T_S) - kD_s \cdot D_s \\ \frac{dD_l}{dt} = \lambda_l \cdot (\alpha \cdot T + \beta \cdot T_S) - kD_l \cdot D_l \end{cases}$$

Model diagnostics

TK model							
		C.V.	STOCHASTIC APPROXIMATION				
	VALUE		S.E.	R.S.E.(%)			
FIXED EFFECTS							
$lpha_{pop}$	0.065		0.015	23			
eta_{pop}	0.36		0.045	12			
$T_{R_{0pop}}$	7.9		1.7	22			
$T_{S_{0pop}}$	43		4.1	9.7			
STANDARD DEVIATION OF THE RANDOM EFFECTS							
$\omega_{lpha_{pop}}$	0.9	110	0.13	14			
$rac{\omega_{lpha_{pop}}}{\omega_{eta_{pop}}}$	0.83	99	0.12	14			
$\omega_{T_{R_{0_{pop}}}}$	0.88	110	0.15	17			
$\omega_{T_{S_{0_{pop}}}}$	0.86	100	0.073	8.5			
ERROR MODEL PARAMETERS							
a	8.7		0.74	8.5			

Correlation of the estimates $\in [-0.12, 0.44]$

Condition number = 4.74

Joint model							
		C.V.	APPRO	CHASTIC DXIMATION			
	VALUE	` '	S.E.	R.S.E.(%)			
	FIXE	D EFI	FECTS				
$D_{s_{0pop}}$	11		0.94	8.9			
$D_{l_{0_{pop}}}$	1.4		0.1	7.4			
$\lambda_{s_{pop}}$	0.38		0.047	12			
$\lambda_{l_{pop}}$	0.086		0.013	15			
$k_{D_{s_{pop}}}$	0.29		0.038	13			
$k_{D_{l_{pop}}}$	0.53		0.089	17			
STANDARD DEVIATION OF THE RANDOM EFFECTS							
$\omega_{D_{s_{0_{pop}}}}$	0.71	82	0.07	9.9			
$\omega_{D_{l_{0_{pop}}}}$	0.51	54	0.062	12			
$\omega_{\lambda_{s_{pop}}}$	0.94	120	0.095	10			
$\omega_{\lambda_{l_{pop}}}$	0.96	120	0.094	9.8			
$\omega_{k_{Ds_{pop}}}$	0.95	120	0.11	11			
$\omega_{k_{D_{l_{pop}}}}$	1.2	170	0.12	11			
ERROR MODEL PARAMETERS							
b_{SHORT}	0.43		0.013	3			
a_{TK}	8.7						
b_{LONG}	0.55		0.018	3.2			

Parameters of the dynamic modeling are predictive of the PFS

Nguyen et al., AACR 2025

The model describes different size-dependent cfDNA kinetics

PFS

Censored

Progression

· Observed data

Conclusions and perspectives

- ICI-treated patients with lower fragmentation of cfDNA before treatment tend to respond better and to have longer PFS.
- Mechanistic modeling offers biological insights to explain the interplay between cfDNA and tumor kinetics.

- Joint TK-cfDNA-PFS modeling
- Integrate the model parameters into multivariable machine learning

Acknowledgement

Inria

Sébastien Benzekry

Lucie Della-Negra

Romain Zakrajsek

Marc Lavielle

AP-HM

Sébastien Salas

Laurent Greillier

Pascale Tomasini

Jean-Laurent Deville

Caroline Gaudy-Marqueste

Safae Chouati

Marie-Annick Pelletier

ID-solutions oncology

Frédéric Fina

Paul Dufossé

Adelis

Frédéric Ginot

Jean-Charles Garcia

Audrey Boutonnet

COMPO team

Anastasiia Bakhmach

Anne Rodallec

Salih Benamara

Florence Gattaccecca

team.inria.fr/compo/

Funding

