A full Bayesian-NLME framework predicts delayed MTX elimination in CNS lymphoma

Marian Klose^{1,2}, Dominik Marschner³, Markus Knott^{3,4}, Julia Wendler^{3,4}, Julian Müller-Kühnle³, Wilhelm Huisinga^{2,5}, Christin Nyhoegen¹, Robin Michelet¹, Anna M. Mc Laughlin⁶, Gerald Illerhaus^{3,4}, Charlotte Kloft^{1,2}

¹Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany; ²Graduate Research Training Program PharMetrX; ³Department of Haematology/Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany; ⁴Stuttgart Cancer Center – Tumorzentrum Eva Mayr-Stihl, Klinikum Stuttgart, Stuttgart, Germany; ⁵Institute of Mathematics, University of Potsdam, Germany; ⁶Pharmetheus AB, Uppsala, Sweden We thank Lukas Kovar for valuable scientific input.

Background

High doses of **methotrexate** (MTX) are first-line treatment for central nervous system lymphoma¹.

MTX is primarily **renally excreted** (80 – 90%) while inducing **nephrotoxicity,** potentially creating a **vicious cycle**¹.

Delayed elimination (> 3 days to decline below a threshold of $C_{MTX} < 0.2 \mu M$) increases **toxicity** but is difficult to predict².

Knowledge Gaps

Predictive performance and **utility** of MTX PK NLME models to support clinical decision-making are rarely assessed.

Neglecting uncertainty by simplifying to the **posterior mode (MAP)** remains a **limitation** of clinical decision-support tools.

Objectives

PK NLME appears suited to **support clinical decision making** by predicting time to 0.2 μ M (t_{0.2µM}), with several models published³.

How well does a newly developed NLME model **predict delayed eliminators** at clinically relevant decision time points?

Can translation into a **full-Bayesian**^{4,5} framework preserve valid **uncertainty quantification** for t_{0.2µM}?

Discussion

Selected MTX model showed good **descriptive** performance (training) **Uncertainty** in predicting t_{0.2µM} was maintained via **full Bayesian** Good **predictive** performance $(t_{0.2\mu M})$ if data >30h was provided (test) **X** Insufficient identification of delayed eliminators at early time points **?** Are **competing approaches** (e.g., machine learning) more **predictive?**

¹FDA Label, Methotrexate Injection, USP, 2011 ²Stoller et al., N. Engl. J. Med., 1977 ³Zhang et al., Eur J Drug Metab PK, 2022 ⁴Margossian and Gillespie, J PK PD, 2016

⁵Stan Development Team, 2025

CRP: C-reactive Protein; eGFR: Estimated Glomerular Filtration Rate; HD-MTX: High-Dose Methotrexate; MAE: Mean Absolute Error; MAP: Maximum A Posteriori; MRE: Mean Relative Error; NPV: Normal Predictive Value; PI: Prediction Interval; t0.2µM: Time to reach 0.2 µM; TDR: True Delayed Rate; Torsten: Pharmacometrics library for Stan.

Abbreviations ALB: Albumin; CNS: Central Nervous System;

Conclusion

The full Bayesian-NLME framework predicted delayed MTX elimination if informative TDM data was provided and preserved predictive uncertainty.

For more information: Marian Klose marian.klose@fu-berlin.de www.clinical-pharmacy.eu

33rd Population Approach Group Europe meeting – PAGE, Thessaloniki, Greece 2025

pdf

website