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Introduction

Hidden Markov models (HMM) have been 

used to describe discrete switches in disease 

dynamics (1). By explicitly including latent 

states in the disease model, inference methods 

can be used to learn otherwise unobserved 

dynamics.

In respiratory diseases such as asthma, 

sudden worsening events called exacerbations 

are associated with a distinct drop in lung 

function. This drop may be modelled as a 

discrete state switch in an HMM, potentially 

enabling new ways to make inference about the 

risk of exacerbations.

This work explores the possibility of modelling 

home-measured peak expiratory flow as an 

HMM via simulated data and estimation method 

evaluation.
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Methods

Observations were modelled using a Gaussian 

process with state dependent mean and 

variance, representing a baseline and a 

worsened disease state, respectively.

𝑌𝑡 = 𝜇𝑋𝑡
+ 𝜀𝑡,  𝜀𝑡 ∼ 𝑁(0, 𝜎𝑋𝑡

2 )
The latent states were modelled as a discrete-

time Markov chain, taking values 0 and 1.

𝑃(𝑋𝑡 = 𝑗  𝑋𝑡−1 = 𝑘 = 𝑝𝑘𝑗

1000 individual data series were simulated to 

resemble peak expiratory flow from clinical trials 

in which home-measured spirometry is carried 

out. Model parameters for each individual 𝑖 
were drawn from probability distributions based 

on previous results (2).

log 𝜇0,𝑖 = log(𝜇0) + 𝜂1,𝑖,  𝜇1,𝑖 = 𝑑𝑖 × 𝜇0,𝑖

log 𝜎0,𝑖
2 = log(𝜎0

2) + 𝜂2,𝑖

log 𝜎1,𝑖
2 = log(𝜎1

2) + 𝜂3,𝑖

logit 𝑑𝑖 = logit(𝑑) + 𝜂4,𝑖

logit 𝑝01,𝑖 = logit(𝑝01) + 𝜂5,𝑖

logit 𝑝10,𝑖 = logit(𝑝10) + 𝜂6,𝑖

where 𝜂𝑖 = 𝜂1,𝑖 , 𝜂2,𝑖 , 𝜂3,𝑖 , 𝜂4,𝑖 , 𝜂5,𝑖 , 𝜂6,𝑖 ∼ 𝑁(0, Ω) 

with covariance matrix Ω. Conclusions

The implemented algorithm performed quite well 

on longer time series in which the dynamics of 

the model were explicitly present, but failed on 

shorter series. Further work suggests that mixed 

HMMs and the SAEM algorithm may solve these 

issues.
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The parameters of the HMM were estimated 

per simulated individual using the Baum-Welch 

algorithm (3). This was done for varying time 

horizons 𝑇  (ranging from 100 to 1000), 

simulating short and long clinical trials, 

respectively.

Latent state estimation was evaluated using 

confusion matrices, showing the accuracy in 

classifying state transitions. This was done 

twice, using true parameters and using 

estimated parameters, respectively.

Figure 3: Parameter estimates and true 

parameter distributions (𝑇 = 100). 

Figure 1: Schematic view of the HMM used in 

this work.

Figure 4: Median absolute error of estimated 

individual parameters relative to true median for 

varying data series lengths. 

Estimated 

state 0

Estimated 

state 1

True 

state 0

0.65

             0.44

0.01

             0.18

True 

state 1

0.01

             0.10

0.33

             0.28

Table 1: Accuracy (% of total data points) of 

estimated latent states given true and estimated 

model parameters, respectively (𝑇 = 100).

True parameter distribution

Estimated parameter values

Figure 2: Simulated PEF measurements 

(points) and latent state estimation (line) given 

true model parameters.

Future Work

Time series length

The issues outlined here are being addressed 

in further work by using a mixed HMM 

framework with random effects on all model 

parameters and implementating the SAEM 

algorithm. Preliminary results indicate good 

alignment between estimated and true 

parameter distributions (Figure 5).

Figure 5: Estimated parameter distributons 

obtained with the SAEM algorithm, and true 

distributions (𝑇 = 100).
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Figure 3 shows the distribution of estimated 

model parameters against true parameter 

distributions. It is clear that large errors exist for 

parameters related to measurement noise and 

transition probability. 

Figure 4 shows that median absolute errors of 

estimated parameters, relative to the true 

median parameter values, increase 

substantially as the length of the clinical trial 

decreases towards 𝑇 = 100.

Results

Hidden Markov Model

Model Simulation

Estimation Methods

Latent State Estimation

Individual Parameter Estimation

Model parameter estimation was evaluated by 

how well the histograms of estimated individual 

parameters resembled the true parameter 

distributions. Further, the median absolute error 

of the parameter estimates was calculated for 

varying time horizons 𝑇.

The large error in parameter estimates for short 

data series is believed to be driven by 

individuals without any true transitions. 

Inference for these cases is indeed difficult and 

remains an important issue to solve before 

applying the methods to clinical trial data. 
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