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qP’s nonlinear mixed-effects Model Automated Developer

■ PopPK model development is traditionally iterative and subjective, but based
on quantifiable heuristics

■ Machine learning can be used to automate decision-making in model building
■ Trends in residuals can point towards plausible next modelling steps
◎ qPnoMAD automates structural and stochastic popPK model development

Overall model building strategy

1 Initialize with simple model: first-order elimination, IIV on CL
2 Select next component using Random Forest (RF) classifier
3 Estimate new model using NONMEM
4 Evaluate improvement based on statistically significant ∆OFV
5 Repeat from step 2 until no further significant improvements

Random Forest Classifier guides next component proposal based on features

Inputs:
■ Training data (features from simulated data

with known true model)
■ State (current model structure)
■ Possible next states (candidate component,

e.g. 2nd CMT or IIV)
■ Test data (features of current model)

Process:
For each candidate component per modelling step:

1 Filter training data: retain rows with
structurally compatible components to the
current estimated state (e.g., same
elimination structure when testing elimination)

2 Train a Random Forest (1000 trees, max
depth 10, fixed seed) using selected features

3 Predict probability for each component

Output:
■ Proposed component to turn on/off next

Features used for the classifier:
■ AIC difference between a linear and a quadratic relationship between:

■ CWRES vs. TAD prior to tmax ■ CWRES vs. TAD after tmax ■ CWRES vs. PRED
■ The sign of the second-order parameter (positive: , negative: )
■ For each IIV parameter: the p-value of a test of variance homogeneity (Fligner-Killeen) between the

post-hoc ETAs and a reference distribution with 15% CV
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∆ AIC= −80.4
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Example Feature means for filtered esti-
mated and varying true models:

True Elimination True Compartments
Feature FO MM 1 >1
∆AICTAD<tmax -19 -2.4 -13 -24
∆AICTAD>tmax -28 -39 -4.2 -82
∆AICPRED -17 -39 -8.1 -44
signTAD<tmax -0.063 -0.11 -0.049 -0.11
signTAD>tmax 0.53 0.52 0.44 0.72
signPRED 0.32 0.42 0.26 0.48

Estimated model: 1 compartment with FO elimina-
tion. True models: FO or MM elimination and 1 or
2-3 compartments. Feature means differ by true
model, indicating discriminative value.

Evaluation on simulated data

■ Simulated (modified) base models from
published drug development programs
■ Small molecule [1]
■ mAb [2]

■ Simulated study designs (Phase I and II,
SAD/MAD) align with true model studies
■ Small molecule: 143 IDs, 18-29

samples per ID
■ mAb: 100 IDs, 13-31 samples per ID

■ qPnoMAD and Pharmpy AMD tool 1.6.0 [3]
performance evaluated on all datasets

Results: Modelling process Results: Secondary PK

Challenges � Future work

■ Choice of Initial values � multiple start values/option to manually
change initial values during the process

■ Unstable runs (adding IIV
may lead to higher OFV)

� check condition number and successful
minimisation

■ Repeated checks of the same
components

� add penalty for recently checked
components

■ Michaelis-Menten is slow and
often evaluated early on

� downweigh Michaelis-Menten
component

■ True model is not necessarily
best (in terms of OFV)

� investigate overfitting and evaluation
approaches

Conclusion: qPnoMAD can guide popPK model selection

■ Parsing less models than an exhaustive search we arrive at a
fit-for-purpose model
■ qPnoMAD tested between 20 and 35 models in total
■ In comparison, Pharmpy often tests more than 100 models

■ While the true models were not identified in the test cases, the
secondary PK parameters were accurate

■ Model building approach mimics a trained pharmacometrician’s
process and can be interpreted similarly

U Opportunity to speed up initial model development considerably to
focus on manual refinement and further modelling
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