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qP’s nonlinear mixed-effects Model Automated Developer

B PopPK model development is traditionally iterative and subjective, but based
on quantifiable heuristics

B Machine learning can be used to automate decision-making in model building
B Trends in residuals can point towards plausible next modelling steps
gPnoMAD automates structural and stochastic popPK model development

Overall model building strategy

BB Initialize with simple model: first-order elimination, 11V on CL
] Select next component using Random Forest (RF) classifier
K] Estimate new model using NONMEM

I3 Evaluate improvement based on statistically significant AOFV
B3 Repeat from step 2 until no further significant improvements

Random Forest Classifier guides next component proposal based on features

Inputs:

Features used for the classifier:

B Training data (features from simulated data
with known true model)

B State (current model structure)

B Possible next states (candidate component,
e.g. 2nd CMT or |IV)

B Test data (features of current model)

Process:
For each candidate component per modelling step:
BB Filter training data: retain rows with
structurally compatible components to the
current estimated state (e.g., same
elimination structure when testing elimination)

FJ Train a Random Forest (1000 trees, max
depth 10, fixed seed) using selected features

EJ Predict probability for each component

Output:
B Proposed component to turn on/off next

Evaluation on simulated data

B Simulated (modified) base models from
published drug development programs
B Small molecule [1]
B mADb [2]

B Simulated study designs (Phase | and I,
SAD/MAD) align with true model studies
B Small molecule: 143 IDs, 18-29

samples per ID

B mADb: 100 IDs, 13-31 samples per ID

B gPnoMAD and Pharmpy AMD tool 1.6.0 [3]
performance evaluated on all datasets

Challenges < Future work

B AIC difference between a linear and a quadratic relationship between:
B CWRESvs. TAD priortot,,,, W CWRESvs. TAD aftert,,,, W CWRESvs. PRED
B The sign of the second-order parameter (positive: \./ , negative: /7\)

B For each IIV parameter: the p-value of a test of variance homogeneity (Fligner-Killeen) between the
post-hoc ETAs and a reference distribution with 15% CV
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Estimated model: 1 compartment with FO elimina-
tion. True models: FO or MM elimination and 1 or
2-3 compartments. Feature means differ by true
model, indicating discriminative value.

Predictions

Predictions

Results: Modelling process Results: Secondary PK
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Conclusion: qPnoMAD can guide popPK model selection

Choice of Initial values = multiple start values/option to manually B Parsing less models than an exhaustive search we arrive at a
change initial values during the process fit-for-purpose model

B Unstable runs (adding 11V = check condition number and successful B gPnoMAD tested between 20 and 35 models in total
may lead to higher OFV) minimisation B In comparison, Pharmpy often tests more than 100 models

B Repeated checks of the same < add penalty for recently checked B While the true models were not identified in the test cases, the
components components secondary PK parameters were accurate

B Michaelis-Menten is slow and < downweigh Michaelis-Menten B Model building approach mimics a trained pharmacometrician’s
often evaluated early on component process and can be interpreted similarly

B True model is not necessarily = investigate overfitting and evaluation ! Opportunity to speed up initial model development considerably to
best (in terms of OFV) approaches focus on manual refinement and further modelling
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