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PAGE Program 2019 

  

Tuesday 11 June 

  

14:00-18:00 Registration at the Conference Venue 

18:00-19:30 Welcome reception with drinks and light snacks (no dinner) 

        

  

Wednesday 12 June 

  

08:00-08:45 Registration 

08:45-09:00 Welcome and Introduction 

09:00-09:45 Keynote lecture Chair: Dinesh De Alwis 

09:00-09:45 Jeff Sachs 
Pharmacometrics: A shot in the arm for vaccine discovery and 
development ~or~ Vaccines are not immune to the charms of 
pharmacometrics  

09:45-09:50 PAGE scientific program  Siv Jönsson 

09:50-11:15 Coffee break, Poster and Software session I 

  
Posters in Group I (with poster numbers starting with I-) are accompanied by their 
presenter 

11:15-12:15 Infectious diseases Chair: France Mentré 

11:15-11:35 Marjorie Imperial 
Stratified medicine approaches for drug susceptible tuberculosis 
patients  

11:35-11:55 Stefanie Hennig 
Repeated time-to-event models support that Pseudomonas 
aeruginosa infection increase the risk of acquiring Aspergillus in 
young children with cystic fibrosis  

11:55-12:15 
María García-
Cremades 

Individual level data meta-analysis from HIV pre-exposure 
prophylaxis (PrEP) clinical trials  

12:15-13:45 Lunch 

13:45-14:30 Tutorial Chair: Mats Karlsson 

13:45-14:30 Nicky Best Use of informative priors in model-informed drug development  

https://www.page-meeting.org/default.asp?abstract=9232
https://www.page-meeting.org/default.asp?abstract=9232
https://www.page-meeting.org/default.asp?abstract=9232
https://www.page-meeting.org/default.asp?keuze=abstracts&id=43&t=programItem&m=Posters%20I:%20Wednesday%20morning
https://www.page-meeting.org/default.asp?abstract=9193
https://www.page-meeting.org/default.asp?abstract=9193
https://www.page-meeting.org/default.asp?abstract=9022
https://www.page-meeting.org/default.asp?abstract=9022
https://www.page-meeting.org/default.asp?abstract=9022
https://www.page-meeting.org/default.asp?abstract=9196
https://www.page-meeting.org/default.asp?abstract=9196
https://www.page-meeting.org/default.asp?abstract=9206
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14:30-15:10 Machine learning in oncology 
Chairs: Mats Karlsson, 

Paolo Magni 

14:30-14:50 Chiara Nicolò 
Machine learning combined to mechanistic modeling of 
differential effects of neoadjuvant sunitinib on primary tumor and 
metastatic growth 

14:50-15:10 Sebastien Benzekry 
Machine learning versus mechanistic modeling for prediction of 
metastatic relapse in breast cancer  

15:10-16:40 Tea break, Poster and Software session II 

  
Posters in Group II (with poster numbers starting with II-) are accompanied by their 
presenter 

16:40-16:45 Clinical pharmacometrics - ISoP special interest group 
Mirjam Trame and Eva 

Germovsek 

16:45-17:25 Clinical applications Chair: Oscar Della Pasqua 

16:45-17:05 João Abrantes 
Bayesian forecasting utilizing bleeding information to support 
dose individualization of factor VIII  

17:05-17:25 Belén Pérez Solans 
Model-based characterization of neutrophil dynamics in children 
receiving busulfan or treosulfan for hematopoietic stem cell 
transplant conditioning  

17:25-18:05 Rare (and other) diseases Chair: Panos Macheras 

17:25-17:45 
Zinnia Parra-
Guillen 

Disease pharmacokinetic-pharmacodynamic (PKPD) modelling to 
support the development of gene therapy treatments for rare 
diseases  

17:45-18:05 Pascal Chanu A disease progression model for geographic atrophy  

  

https://www.page-meeting.org/default.asp?abstract=8862
https://www.page-meeting.org/default.asp?abstract=8862
https://www.page-meeting.org/default.asp?abstract=8862
https://www.page-meeting.org/default.asp?abstract=9099
https://www.page-meeting.org/default.asp?abstract=9099
https://www.page-meeting.org/default.asp?keuze=abstracts&id=43&t=programItem&m=Posters%20II:%20Wednesday%20afternoon
https://www.page-meeting.org/default.asp?abstract=8944
https://www.page-meeting.org/default.asp?abstract=8944
https://www.page-meeting.org/default.asp?abstract=8950
https://www.page-meeting.org/default.asp?abstract=8950
https://www.page-meeting.org/default.asp?abstract=8950
https://www.page-meeting.org/default.asp?abstract=8909
https://www.page-meeting.org/default.asp?abstract=8909
https://www.page-meeting.org/default.asp?abstract=8909
https://www.page-meeting.org/default.asp?abstract=9184
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Thursday 13 June 

  

08:30-09:50 Lewis Sheiner Student Session 
Chair: Andrew Hooker, 
Emilie Hénin, Thomas 

Dorlo 

08:30-08:55 
Moustafa 
Mahmoud 
Abdellatif Ibrahim 

Competing risks analysis of the Finnish diabetes prevention study  

08:55-09:20 
Sebastiaan 
Goulooze 

Novel pharmacometric techniques to quantify and prevent 
iatrogenic withdrawal in children  

09:20-09:45 Elena Tosca 
Dynamic Energy Budget (DEB) based models of tumor-in-host 
growth inhibition and cachexia onset  

09:45-09:50 Presentation of Lewis Sheiner student session awards 

09:50-09:55 Special announcement 

09:55-11:20 Coffee break, Poster and Software session III 

  
Posters in Group III (with poster numbers starting with III-) are accompanied by their 
presenter 

11:20-12:25 
Regulatory model-informed drug discovery and 
development 

Chair: Aris Dokoumetzidis 

11:20-12:05 
Kristin Karlsson and 
Flora Musuamba 
Tshinanu 

Regulatory model-informed drug discovery and development in 
EU – News flash and examples  

12:05-12:25 Sylvie Retout 
A model-based extrapolation enabled labelling of emicizumab in 
haemophilia A paediatric patients  

12:25-12:30 Announcement for ACoP9 2019 Mirjam Trame 

12:30-14:00 Lunch 

12:30-14:00 ISoP Student Community meet-and-greet during lunch 

14:00-15:20 Stuart Beal methodology session 
Chair: Emmanuelle Comets 

and Siv Jönsson 

14:00-14:20 
Theodoros 
Papathanasiou 

Model based optimization of dose-finding studies for drug-
combinations  

14:20-14:40 Antonio Goncalves Model averaging in viral dynamic models  

https://www.page-meeting.org/default.asp?abstract=9033
https://www.page-meeting.org/default.asp?abstract=9078
https://www.page-meeting.org/default.asp?abstract=9078
https://www.page-meeting.org/default.asp?abstract=9141
https://www.page-meeting.org/default.asp?abstract=9141
https://www.page-meeting.org/default.asp?keuze=abstracts&id=43&t=programItem&m=Posters%20III:%20Thursday%20morning
https://www.page-meeting.org/default.asp?abstract=9208
https://www.page-meeting.org/default.asp?abstract=9208
https://www.page-meeting.org/default.asp?abstract=9089
https://www.page-meeting.org/default.asp?abstract=9089
https://www.page-meeting.org/default.asp?abstract=8975
https://www.page-meeting.org/default.asp?abstract=8975
https://www.page-meeting.org/default.asp?abstract=9049
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14:40-15:00 
Mohammed 
Cherkaoui Rbati 

A liver model for chemoprotection against malaria  

15:00-15:20 Xiao Zhu 
A cohesive model framework of receptor pharmacology: beyond 
the Emax model  

15:20-15:25 Announcement for WCoP 2020  

15:25-16:50 Tea break, Poster and Software session IV 

  
Posters in Group IV (with poster numbers starting with IV-) are accompanied by their 
presenter 

16:50-17:30 Stuart Beal methodology session, continued Chair: Justin Wilkins 

16:50-17:10 Alison Margolskee 
Exploratory graphics (xGx): promoting the purposeful exploration 
of PKPD data  

17:10-17:30 Marc Cerou 
Performance of npde for the evaluation of joint model with time 
to event data  

18:30-01:00 Social event 

  

https://www.page-meeting.org/default.asp?abstract=9158
https://www.page-meeting.org/default.asp?abstract=8832
https://www.page-meeting.org/default.asp?abstract=8832
https://www.page-meeting.org/default.asp?keuze=abstracts&id=43&t=programItem&m=Posters%20IV:%20Thursday%20afternoon
https://www.page-meeting.org/default.asp?abstract=8913
https://www.page-meeting.org/default.asp?abstract=8913
https://www.page-meeting.org/default.asp?abstract=8940
https://www.page-meeting.org/default.asp?abstract=8940
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Friday 14 June 

  

09:20-10:20 Oncology 
Chair: Ana Ruiz, Siv 

Jönsson 

09:20-09:40 
Aurelia de Vries 
Schultink 

Prospective evaluation of therapeutic drug monitoring of 
endoxifen: feasibility of observational and randomized trials  

09:40-10:00 Coralie Tardivon 
Association between tumor size kinetics and survival in advanced 
urothelial carcinoma patients treated with atezolizumab: 
implication for patient’s follow-up 

10:00-10:20 Jiajie Yu 
A new approach to predict PFS in ovarian cancer based on tumor 
growth dynamics  

10.20-10.25 Preview of PAGE 2020 

10:25-11:00 Coffee break 

11:00-11:40 Oncology, continued Chair: Marylore Chenel 

11:00-11:20 Julie Janssen 
A semi-physiological framework to predict changes in 
pharmacokinetics of cytotoxic drugs in pregnant women  

11:20-11:40 James Lu 
Integrated efficacy-safety QSP model of acute myeloid leukemia 
(AML) generates insights into the role of clinical dose schedules 
on cytopenia  

11.40-11.50 Closing remarks 

11:50-12:10 Audience input for potential PAGE 2020 topics 

 
  

https://www.page-meeting.org/default.asp?abstract=9150
https://www.page-meeting.org/default.asp?abstract=9150
https://www.page-meeting.org/default.asp?abstract=8824
https://www.page-meeting.org/default.asp?abstract=8824
https://www.page-meeting.org/default.asp?abstract=8824
https://www.page-meeting.org/default.asp?abstract=8881
https://www.page-meeting.org/default.asp?abstract=8881
https://www.page-meeting.org/default.asp?abstract=9101
https://www.page-meeting.org/default.asp?abstract=9101
https://www.page-meeting.org/default.asp?abstract=8919
https://www.page-meeting.org/default.asp?abstract=8919
https://www.page-meeting.org/default.asp?abstract=8919
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PAGE2019 Oral Abstracts 
 
B-03: Jeff Sachs Pharmacometrics: A shot in the arm for vaccine discovery and development ~or~ 

Vaccines are not immune to the charms of pharmacometrics ..................................................... 8 
B-06: Marjorie Imperial Stratified medicine approaches for drug susceptible tuberculosis patients .... 9 
B-07: Stefanie Hennig Repeated time-to-event models support that Pseudomonas aeruginosa 

infection increase the risk of acquiring Aspergillus in young children with cystic fibrosis ......... 12 
B-08: María García-Cremades Individual level data meta-analysis from HIV pre-exposure prophylaxis 

(PrEP) clinical trials ...................................................................................................................... 14 
B-10: Nicky Best Use of informative priors in model-informed drug development .............................. 16 
B-11: Chiara Nicolò Machine learning combined to mechanistic modeling of differential effects of 

neoadjuvant sunitinib on primary tumor and metastatic growth ............................................... 17 
B-12: Sebastien Benzekry Machine learning versus mechanistic modeling for prediction of metastatic 

relapse in breast cancer ............................................................................................................... 19 
B-15: João Abrantes Bayesian forecasting utilizing bleeding information to support dose 

individualization of factor VIII ...................................................................................................... 21 
B-16: Belén Pérez Solans Model-based characterization of neutrophil dynamics in children receiving 

busulfan or treosulfan for hematopoietic stem cell transplant conditioning ............................. 24 
B-17: Zinnia Parra-Guillen Disease pharmacokinetic-pharmacodynamic (PKPD) modelling to support 

the development of gene therapy treatments for rare diseases ................................................ 27 
B-18: Pascal Chanu A disease progression model for geographic atrophy ........................................... 29 
C-01: Moustafa Ibrahim Competing risks analysis of the Finnish diabetes prevention study .............. 31 
C-02: Sebastiaan Goulooze Novel pharmacometric techniques to quantify and prevent iatrogenic 

withdrawal in children ................................................................................................................. 34 
C-03: Elena Tosca Dynamic Energy Budget (DEB) based models of tumor-in-host growth inhibition 

and cachexia onset ...................................................................................................................... 37 
C-07: Kristin Karlsson Regulatory model-informed drug discovery and development in EU – News 

flash and examples ...................................................................................................................... 40 
C-08: Sylvie Retout A model-based extrapolation enabled labelling of emicizumab in haemophilia A 

paediatric patients <1 year old despite lack of clinical data ........................................................ 41 
C-12: Theodoros Papathanasiou Model based optimization of dose-finding studies for drug-

combinations. .............................................................................................................................. 43 
C-13: Antonio Goncalves Model Averaging in viral dynamic models .................................................... 46 
C-14: Mohammed Cherkaoui Rbati A liver model for chemoprotection against malaria ..................... 48 
C-15: Xiao Zhu A cohesive model framework of receptor pharmacology: beyond the Emax model ... 50 
C-18: Alison Margolskee Exploratory graphics (xGx): promoting the purposeful exploration of PKPD 

data .............................................................................................................................................. 53 
C-19: Marc Cerou Performance of npde for the evaluation of joint model with time to event data ... 55 
D-01: Aurelia de Vries Schultink Prospective evaluation of Therapeutic Drug Monitoring of endoxifen: 

feasibility of observational and randomized trials. ..................................................................... 57 
D-02: Coralie Tardivon Association between tumor size kinetics and survival in advanced urothelial 

carcinoma patients treated with atezolizumab: implication for patient’s follow-up.................. 59 
D-03: Jiajie Yu A new approach to predict PFS in Ovarian Cancer based on tumor growth dynamics. 61 
D-06: Julie Janssen A semi-physiological framework to predict changes in pharmacokinetics of 

cytotoxic drugs in pregnant women ............................................................................................ 63 
D-07: James Lu Integrated efficacy-safety QSP model of acute myeloid leukemia (AML) generates 

insights into the role of clinical dose schedules on cytopenia .................................................... 65 
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Keynote lecture | Wednesday 09:00-09:45 

 

B-03: Jeff Sachs Pharmacometrics: A shot in the arm for vaccine discovery and 
development ~or~ Vaccines are not immune to the charms of pharmacometrics 

Jeffrey R. Sachs 
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism – Quantitative Pharmacology and 

Pharmacometrics, MSD., Inc., Kenilworth, NJ, USA 

Objectives:  

The objective is to (1) inform the audience about pharmacometrics (PMX) opportunities in vaccine 
discovery and development (D&D), and (2) to motivate, by examples, PMX practitioners to impact vaccine 
D&D. 

Overview/Description of presentation: 

Prophylactic vaccines are safe and effective and have made an immense contribution to human and animal 
health [1]. Pharmacometrics (PMX) has only recently been introduced to vaccine discovery and 
development, and is now becoming fully integrated into, and impactful on decision-making. This has 
resulted in better scientific understanding, increased POS, substantial savings, and other benefits that have 
been seen in the other therapeutic areas that have adopted PMX. The impact of this work has included go 
and no-go decisions, design of efficient pre-clinical and clinical trials, integration of preclinical and clinical 
data, quantitative prediction for go/no-go and dose-level decisions, and integration of data across multiple 
trials for more informed decision-making. The methods used include QSP modelling, trial simulation, 
Bayesian inference, and model-based meta-analyses (“comparator modelling”). 

The presentation will start with a background on vaccine discovery and development (contrasting with 
other therapeutic areas) including a brief overview of: the risk/benefit considerations in vaccines, the 
choices and uses of biomarkers to mitigate risk, vaccine terminology, the immune system, and vaccine 
platforms (DNA, protein, VLP, etc.). This will be followed by examples across the spectrum of applications 
from discovery through development and across the many kinds of decisions impacted and methods used. 
These will include 

• An application of M&S that supported both Go and No-Go decisions 
• An application of M&S that increased power in trial design while saving considerable cost by 

optimizing sampling of subjects’ disease state. 
• An application of M&S providing a novel phase 3 endpoint substantially increasing power of a 

proposed trial design 

Conclusions/Take home message:  

Application of PMX to vaccine D&D has developed into an opportunity to impact human health and to 
develop innovative PMX methods applicable to other areas. 

References: 
[1] Brian Greenwood, The contribution of vaccination to global health: past, present and future, Philos Trans 
R Soc Lond B Biol Sci. 369(1645), 2014. doi: 10.1098/rstb.2013.0433. 



 

Page | 9  

  

Oral: Drug/Disease modelling | Wednesday 11:15-11:35 

 

B-06: Marjorie Imperial Stratified medicine approaches for drug susceptible 
tuberculosis patients 

Marjorie Z. Imperial (1), Payam Nahid (1), Patrick P. J. Phillips (1), Geraint R. Davies (2), Katherine Fielding 
(3), Debra Hanna (4,5), David Hermann (5), Robert S. Wallis (6), John L. Johnson (7,8), Christian Lienhardt 

(9,10) and Rada M. Savic (1) 
(1) University of California, San Francisco, San Francisco, CA, USA. (2) University of Liverpool, Liverpool, UK. 

(3) London School of Hygiene and Tropical Medicine, London, UK. (4) Critical Path Institute, Tucson, AZ, USA. 
(5) Bill and Melinda Gates Foundation, Seattle, WA, USA. (6) Aurum Institute and ACT4TB/HIV, 

Johannesburg, South Africa. (7) Case Western Reserve University, Cleveland, OH, USA. (8) University 
Hospitals Cleveland Medical Center, Cleveland, OH, USA. (9) Global Tuberculosis Programme, World Health 

Organization, Geneva, Switzerland. (10) Unité Mixte Internationale TransVIHMI (UMI 233 IRD–U1175 
INSERM–Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, 

France. 

Objectives:  

Tuberculosis (TB) kills more people than any other infectious disease. All current approaches to TB 
treatment are based on a one-size-fits-all approach, which leads to under-treatment of patients with severe 
forms of disease and entails unnecessarily long treatment with potential toxicities for many patients in 
whom the disease is less severe.[1] Currently, all TB drug development efforts are aimed at shortening 
treatment duration using the same one-size-fits-all paradigm.[2]  However, all recent Phase 3 clinical trials 
(OFLOTUB[3], REMoxTB[4], and RIFAQUIN[5]) failed to show non-inferiority between 4-month 
fluoroquinolone-containing regimens and 6-month standard of care. Nonetheless, the 4-month treatments 
achieved 80% cure rates, confirming that a significant proportion of global TB burden is eligible for short 
duration, only if major characteristics of these patients are identified. To that end, we pooled individual 
patient data from these three trials to 1.) identify populations eligible for short course therapy, and 
conversely, hard-to-treat populations requiring longer courses, 2.) assess the value of sputum culture 
conversion biomarker, common Phase 2B endpoint,  as a predictor of outcomes, 3.) evaluate the impact of 
adherence and dosing strategies on outcomes, and 4.) develop data-driven clinical tools that can be used to 
provide recommendations for treatment interventions in stratified groups. 

Methods:  

Standardized individual patient data were obtained from a public repository.[6] Each trial evaluated later-
generation fluoroquinolones as substitutions for ethambutol or isoniazid with the objective of shortening 
treatment duration from the standard six months to four months. A fourth trial, DMID 01-009[7], in 
patients with non-cavitary disease treated with a 4-month standard regimen was used for external 
validation. 

The primary efficacy endpoint was time to an unfavorable outcome up to 24 months after start of 
treatment. We performed multivariate Cox proportional hazard analysis to identify risk factors of 
unfavorable outcomes. Baseline predictors that were common across trials were included in the analysis: 
age, race, body mass index, sex, HIV status, presence of cavitation and smear status (measure of bacterial 
burden). Month 2 culture status and patient adherence were considered as on-treatment predictors. 
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Non-inferiority analyses were performed in patient subgroups according to identified risk factors in the Cox 
analysis. The difference in proportion of unfavorable outcomes was calculated using inverse probability 
Kaplan-Meier (KM) estimates at 24 months after start of treatment. Non-inferiority was assessed using the 
upper bound of the two-sided 90% confidence interval (CI), determined by bootstrapping (n=500), and a 
non-inferiority margin of 6 percentage points. 

A parametric survival model was developed next to obtain a clinical trial simulation tool and patient 
stratification algorithm. A competing risks model was developed for two types of unfavorable outcomes: a.) 
TB related events (i.e. relapse) and b.) non-TB related events (i.e. dropout). Gompertz, Weibull, and surge 
hazard models were explored. Baseline characteristics, treatment exposure (treatment duration, 
cumulative number of treatment days, and regimen composition), and on treatment culture positivity were 
evaluated as predictors of outcomes using a stepwise model selection approach with forward inclusion 
(p<0.05) and backward deletion (p>0.01) steps. 

The final parametric model was used to evaluate in silico novel clinical trial designs and novel strategies to 
TB treatment based on stratified medicine principles – in which individualized treatment duration is based 
on patient phenotypes. 

All analyses were performed in R 3.4 and NONMEM 7.4. Clinical simulation and clinical management tools 
were developed using the ‘shiny’ package in R 3.4. 

Results: 

Of 3405 patients, 1404 were randomized to a 6-month control regimen and 2001 to 4-month experimental 
regimens. In patients assigned to experimental regimens, baseline smear 3+ relative to smear negative or 
1+ and HIV seropositive were the two major clinical risk factors for unfavorable outcomes with an adjusted 
hazard ratio (HR) of 1.6 (95% CI,1.2-2.3) and 1.5 (95% CI 1.1-2.0), respectively. HIV seropositive was also a 
major clinical risk factor in patients assigned to the control regimen (HR 3.1; 95% CI 2.0-4.6). Non-
adherence was the most significant risk factor of unfavorable outcome irrespective of regimen with HR of 
5.7 (95% CI, 3.3-9.9) and 5.9 (95% CI, 3.3-10.5) for patients who miss 10% or more doses relative to fully 
adherent patients following a 4- and 6-month regimen, respectively.[8] 

In an easy-to-treat phenotype, the proportion of unfavorable outcomes for patients with a baseline smear 
<2+ grade or non-cavitary disease, representing 47% of the population, was non-inferior in 4- vs 6-month 
groups (difference in KM estimate, 3.4; 90% CI, 1.5 to 5.4), indicating that these patients can receive short 
course therapy. Patients with smear 3+ and cavitary disease, consisting of 34% of the study population, 
were inferior with the 4-month regimens (difference of 8.8; 90% CI, 6.4-11.3). The easy-to-treat population 
was externally validated in an independent dataset from the DMID 01-009 trial.[8] 

The parametric model confirmed results of the Cox analysis and showed that high baseline smear, HIV 
seropositive, increased number of missed treatment days, and month 2 culture positivity increases the risk 
of TB related events. Additionally, older patients are at increased risk of non-TB related events. 

Three stratified virtual populations were investigated in clinical trial simulations: a.) easy-to-treat defined as 
smear <2+ or non-cavitary disease, b.) moderate-to-treat defined as smear 2+ and cavitary disease, and c.) 
hard-to-treat defined as smear 3+ and cavitary disease. Clinical trial simulations indicated that stratified 
medicine approaches to TB care, where treatment duration is selected with precision based on patient risk, 
can result in high cure rates and enable implementation of superiority trial designs in TB drug development. 

Conclusion:  

In this pooled analysis of three recent Phase 3 treatment shortening trials, we have identified easy- and 
hard-to-treat phenotypes in drug susceptible TB patients. The rifampin-containing regimens tested in these 
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trials are unforgiving with minimal non-adherence resulting in significantly increased risk for unfavorable 
outcomes. Based on these results, we have developed a risk stratification algorithm and clinical trial 
simulation tool that was used to investigate optimal treatment interventions for stratified populations. Our 
results have led to two novel Phase 3 trials currently being designed and developed to evaluate principles 
of stratified medicine for treatment of drug susceptible and multi-drug resistant TB, which is a paradigm-
shifting approach to tackling the TB epidemic. 

References:  
[1] P. Nahid et al., “Official American Thoracic Society/Centers for Disease Control and 
Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-
Susceptible Tuberculosis,” Clin. Infect. Dis., vol. 63, no. 7, pp. e147–e195, 2016. 
[2] S. Goldberg, “TBTC Study 31: Rifapentine-containing Tuberculosis Treatment Shortening Regimens 
(S31/A5349).” [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT02410772. 
[3] C. S. Merle et al., “A Four-Month Gatifloxacin-Containing Regimen for Treating Tuberculosis,” N. Engl. J. 
Med, vol. 371, no. 23, pp. 1588–1598, 2014. 
[4] S. H. Gillespie et al., “Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis,” N. 
Engl. J. Med., vol. 371, no. 17, pp. 1577–1587, 2014. 
[5] A. Jindani et al., “High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis,” N. Engl. J. Med., 
vol. 371, no. 17, pp. 1599–1608, 2014. 
[6] “Platform for Aggregation of Clinical TB Studies, TB-PACTS,” Critical Path Institute. . 
[7] J. L. Johnson et al., “Shortening Treatment in Adults with Noncavitary Tuberculosis and 2-Month Culture 
Conversion,” Am J Respir Crit Care Med, vol. 180, pp. 558–563, 2009. 
[8] M. Z. Imperial et al., “A patient-level pooled analysis of treatment-shortening regimens for drug-
susceptible pulmonary tuberculosis,” Nat. Med., vol. 24, no. 11, pp. 1708–1715, Nov. 2018. 
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Oral: Drug/Disease modelling | Wednesday 11:35-11:55 

 

B-07: Stefanie Hennig Repeated time-to-event models support that Pseudomonas 
aeruginosa infection increase the risk of acquiring Aspergillus in young children with 

cystic fibrosis 

Sabariah Noor Harun,(1,2) Nicholas H. G. Holford,(2,3) Keith Grimwood,(4,5) Claire E. Wainwright,(6,7) 
Stefanie Hennig,(2) on behalf of the Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) study 

group 
1 School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; 2 School of 

Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia; 3 Department of Pharmacology and 
Clinical Pharmacology, University of Auckland, Auckland, New Zealand. 4 School of Medicine and Menzies 

Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; 5 Departments of Infectious 
Diseases and Paediatrics, Gold Coast Health, Southport, QLD 4215, Australia; 6 Department of Respiratory 

and Sleep Medicine, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia; 7Child Health 
Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia 

Objectives: Chronic P. aeruginosa infection is usually treated with long-term, inhaled antibiotic therapy in 
patients with cystic fibrosis (CF). However, such treatment has been associated with airway dysbiosis and 
acquisition of other potential pathogens, including filamentous fungi from the Aspergillus genus. While 
Aspergillus detection rates in adults, adolescents and older children with CF have increased, the risk of 
acquiring this fungal pathogen in young children is unknown. 

This study aimed to determine the risk and explanatory factors of acquiring Aspergillus in children with CF 
within the first 5-years of life. 

Methods: Clinical, bronchoalveolar lavage (BAL) and treatment data from the Australasian Cystic Fibrosis 
Bronchoalveolar Lavage study [1] was used to identify predictive factors for detecting Aspergillus. Infants 
detected by a new born screening programme and with features of classic CF (two or more of the following: 
two CF gene mutations, sweat chloride >60mmol/L, pancreatic insufficiency or meconium ileus) were 
randomised to either BAL-directed therapy or standard care where clinical judgement and oropharyngeal 
(OP) swabs guided treatment of pulmonary exacerbations in the first 5-years of life. When a child in either 
study arm had a pulmonary exacerbation, a specimen (either via BAL or OP) was obtained. Children in the 
BAL-directed arm had a BAL at baseline (before age 6-months), at the study end (at age 5-years), and after 
completion of any P. aeruginosa eradication therapy. A confirmed P. aeruginosa infection was treated 
identically with a course of anti-pseudomonal eradication therapy, which involving 2-weeks of intravenous 
antibiotics, followed by 8-weeks of tobramycin solution for inhalation. OP specimens are commonly 
associated with increased false positive results, therefore only BAL culture data was analysed. 

A longitudinal parametric survival analysis was performed using interval-censored repeated time-to-event 
(RTTE) models to determine the risk of acquiring recurrent positive Aspergillus BAL cultures in the first 5-
years of life. Specifically, a RTTE model for positive P. aeruginosa BAL cultures was built concurrently with 
an Aspergillus RTTE model from birth until age 5-years. The joint model allows for the influence of the P. 
aeruginosa eradication therapy on the risk of having Aspergillus positive cultures to be evaluated. 

Results: The median (interquartile range) age for the first P. aeruginosa positive culture was 2.38 (1.32-
3.79) years and 3.69 (1.68-4.74) years for the first Aspergillus positive culture. 
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In the child’s first year of entering the study, the risk of acquiring P. aeruginosa had a hazard ratio of 0.399 
(95% CI 0.181 to 0.599). After the first and second P. aeruginosa events, the risk of acquiring the 
subsequent P. aeruginosa infection increased with a hazard ratio of 138 (95%CI 50.6, 1236). As predicted by 
a Gompertz hazard model, the risk of acquiring Aspergillus event was very low during the first year of the 
study period. However, the risk then increased influenced by factors other than time alone. Having had the 
first Aspergillus event increased the risk of a second or third Aspergillus event as shown by hazard ratios of 
7.29x105 (95%CI 1.99x105, 1.83x106) and 5.97x105 (95%CI 1.21x105, 2.05x106), respectively. After 
completing P. aeruginosa eradication therapy, the Aspergillus risk increased with a hazard ratio of 2.75 
(95%CI 1.45, 5,41). Kaplan Meier visual predictive checks for P. aeruginosa events show good predictions 
and for Aspergillus events also indicate that the final model describes the observed data generally 
adequately, with some discrepancies at 4 years of age. 

Conclusions: A joint RTTE model for two non-competing but interacting interval censored events was 
developed. Young children with CF, completing intensive Pseudomonas aeruginosa eradication treatment 
and having experienced a previous Aspergillus event are associated with substantially increased risk of 
acquiring further Aspergillus events. 

References:  
[1] Wainwright CE, Vidmar S, Armstrong DS, et al. Effect of bronchoalveolar lavage-directed therapy on 
Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized 
trial. JAMA 2011;306:163-71. 
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B-08: María García-Cremades Individual level data meta-analysis from HIV pre-
exposure prophylaxis (PrEP) clinical trials 

Maria Garcia-Cremades (1), Katarina Vučićević (1,2), Craig Hendrix (3), Leah Jarlsberg (1), Robert Grant (4), 
Connie L. Celum (5) , Michael Martin (6,7), Jared Baeten (5), Jeanne Marazzo (8), Peter Anderson (9), David 

Glidden (10), Radojka M. Savic (1) 
(1)Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San 

Francisco, USA. (2)Department of Pharmacokinetics and Clinical Pharmacy, School of Pharmacy, University 
in Belgrade, Belgrade, Serbia. (3)Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins 

University, Baltimore, MD, USA. (4)Department of Medicine, University of California San Francisco, San 
Francisco, USA. (5)Departments of Global Health, Medicine, and Epidemiology, University of Washington, 

Seattle, WA, USA. (6)Thailand Ministry of Public Health-US CDC Collaboration, Nonthaburi, Thailand. 
(7)Centers for Disease Control and Prevention, Atlanta, GA, USA. (8)Division of Infectious Diseases, 

University of Alabama at Birmingham Medical Center, Birmingham, Alabama, USA. (9)Department of 
Pharmaceutical Sciences, University of Colorado, Denver. (10)Department of Epidemiology and Biostatistics, 

University of California San Francisco, San Francisco, USA. 

Introduction: Daily tenofovir has proven efficacy in preventing HIV infection in high-risk populations, when 
patients are compliant. However, effective preventive concentration has not been determined using HIV 
infection as outcome, due to lack of power in a single clinical trial and large cofounding with non-
adherence. Furthermore, infection risk in target populations is poorly defined, making it difficult to properly 
identify key patients who would benefit the most from PrEP therapy. To address those pertinent questions, 
we have constructed the largest individual data base up to date from the 5 latest Phase 3 HIV prevention 
clinical trials. 

Our aims were (i) to identify patient subgroups at the highest risk of HIV infection in target populations, (ii) 
to estimate preventive tenofovir concentrations in target populations based on pharmacokinetic (PK)-HIV 
outcome modeling and (iii) to evaluate the target site tenofovir diphosphate PK in peripheral blood 
mononuclear cells (PBMC) vs plasma tenofovir as a marker of HIV prevention. 

Methods:(i) Longitudinal PK data of tenofovir in plasma and tenofovir metabolite in PBMC, (ii) HIV outcome 
and (iii) individual’s demographics and risk factors data from 13,727 individuals obtained from 5 phase 3 
randomized controlled trials were integrated and analyzed with NONMEM 7.4 using population 
approaches. Those trials evaluated tenofovir-based PrEP therapy efficacy in different HIV risk groups: 
injection drug users (Bangkok1), men or transgender women who have sex with men (iPrEX2), women at 
high risk of infection (VOICE3), HIV serodiscordant heterosexual couples (Partners4), and high risk 
heterosexual men and women (TDF25). The analyses were done sequentially: 

• The probability of HIV infection over time was analyzed through parametric survival analysis using 
data from the placebo arms of the 5 PrEP trials (n=5313). Studies were analyzed separately due to 
availability of baseline covariates specific for target populations. Baseline survival models were 
evaluated and covariate analysis was performed by stepwise covariate modelling. Patient-specific 
risk stratification algorithm was developed. 

• The PK analysis of tenofovir (2 compartment model) and its metabolite (effect compartment 
model) was done sequentially pooling the available data from iPrEX, VOICE and Partners (n=2360). 
Longitudinal adherence to the treatment was assessed by applying mixture modeling approaches 
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on the relative bioavailability fraction. Data below limit of quantification were handled with the M3 
method. 

• PK exposure metrics for tenofovir in plasma were linked to the probability of HIV infection in 
parametric survival analysis. The effect of tenofovir diphosphate in PBMC as predictor of HIV 
prevention was explored. 

Results: Exponential hazard distribution best fitted the time to HIV infection data from the control arms of 
the PrEP studies. The analysis identified set of risk factors which are common (e.g. female sex, age) or 
unique to each population (e.g non-condom receptive anal intercourse, and syphilis seroreactivity in iPrEX 
study). Most surprisingly, women appear to be at greater risk of HIV infection compared to men. In 
population PK model, 2 patient subpopulations were identified, adherent F=100% and non-adherent 
F=<1%) through the application of a mixture model on relative bioavailability, with an estimated probability 
of being in adherent group of 55%. Longitudinal adherence and PK profiles were reconstructed for each 
patient based on the established mixture model and PK data. These were then linked to HIV infection 
(characterized by a survival model with Surge hazard distribution) using a sigmoidal Emax model. 
Underlying individuals risk hazard was found to be important factor in determining accurate PKPD. The 
EC50 identified in high risk group was found to be 10.21 ng/mL. Tenofovir diphosphate, appeared to be a 
better marker of HIV prevention compared to the plasma tenofovir, with an estimated EC50 of 6.91 
fmol/106cells. 

Conclusions: We have quantified tenofovir preventive concentration based on the largest database up to 
date which includes HIV outcome. We have established patient-specific risk stratification algorithm for HIV 
infection. These models and tools will further be used for: (i) optimization of novel PrEP clinical trial 
designs, enrollment and follow up strategies, (ii) the development of novel tenofovir formulations and (iii) 
implementation of patient management strategies in the clinic. 
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HIV prevention in men who have sex with men. N Engl J Med. 2010;363:2587–99. 
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B-10: Nicky Best Use of informative priors in model-informed drug development 

Nicky Best 
GlaxoSmithKline 

Objectives: 

• To introduce methods for constructing informative priors from historical data or by elicitation from 
experts 

• To discuss different methods for weighting priors in relation to data and for assessing and handling 
conflicts between prior and data 

• To share examples of how such priors are implemented in models to inform different stages of drug 
development 

Overview/Description of presentation:  

This presentation will provide a brief overview of some of approaches for combining prior information and 
data for model-based inference and decision-making for drug development. I will discuss the use of expert 
elicitation methods to “bridge the gap” between existing in vitro/pre-clinical data and expected treatment 
effects in patient populations, and show how the elicited priors can be used to calculate expected 
probability of success of clinical development plans. I will also discuss “dynamic borrowing” methods for 
constructing robust priors directly from historical data and using these in a Bayesian model which 
adaptively down-weighs the prior according to the observed conflict between prior and new data. This 
approach will be illustrated with case studies using historical control data to supplement the control arm in 
a new clinical trial, and extrapolation of clinical efficacy from adult to paediatric populations. 

Conclusions/Take home message:  

The methods and examples presented in this tutorial illustrate the possibility to enable robust inclusion of 
prior information into model-based drug development. 

References:  
[1] Dallow N, Best N, Montague TH. (2018). Better decision making in drug development through adoption 
of formal prior elicitation. Pharmaceutical Statistics. doi:10.1002/pst.1854 
[2] Schmidli, H. , Gsteiger, S. , Roychoudhury, S. , O'Hagan, A. , Spiegelhalter, D. and Neuenschwander, B. 
(2014), Robust meta-analytic-predictive priors in clinical trials with historical control information. 
Biometrics, 70: 1023-1032. doi:10.1111/biom.12242 
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B-11: Chiara Nicolò Machine learning combined to mechanistic modeling of 
differential effects of neoadjuvant sunitinib on primary tumor and metastatic growth 

C. Nicolò (1,2), M. Mastri (3), J. ML Ebos (3,4), S. Benzekry (1,2) 
(1) MONC team, Inria Bordeaux Sud-Ouest, Talence, France, (2) Institut de Mathématiques de Bordeaux, 

Bordeaux University, Talence, France, (3) Department of Cancer Genetics and Genomics, Roswell Park 
Comprehensive Cancer Center, Buffalo, NY, USA, (4) Department of Medicine, Roswell Park Comprehensive 

Cancer Center, Buffalo, NY, USA. 

Introduction: 

Despite proven clinical action of angiogenic inhibitors [1], recent experimental evidence also suggests 
differential effects of these drugs on primary and secondary tumors [2]–[4]. In this work we extended our 
previous mechanistic model [5] to describe the effect of neoadjuvant sunitinib therapy in an ortho-surgical 
mouse model of spontaneous metastatic breast cancer. Model development was guided by a large 
experimental data set of 104 mice treated with multiple scheduling strategies. The experimental data 
comprised longitudinal measurements of primary tumor (PT) size and metastatic burden (MB), as well as 
survival data and pre-surgical biomarkers (circulating tumor cells (CTCs) and myeloid-derived suppressor 
cells (MDSCs) counts and proliferation and endothelial immunohistochemical markers). 

Objectives: 

• Understand the differential effects of Suntinib on primary tumor and metastatic growth 
• Establish a minimal kinetics-pharmacodynamics (K-PD) model of neoadjuvat suntinib therapy 
• Assess the predictive power of biomarkers on the model parameters 

Methods: 

We adapted a previously established mathematical model [5] to include the effect of neoadjuvant sunitinib 
therapy by assuming that the drug reduces the primary tumor growth rate by a term proportional to its 
concentration. As no pharmacokinetic data were collected in our study, we used a K-PD approach (one 
compartment model with elimination rate from the literature [6]). 

PT and MB data were fitted simultaneously for vehicle and sunitinib-treated animals using a nonlinear-
mixed effects modeling approach [7]. Maximum likelihood estimates of the population parameters were 
obtained using the Stochastic Approximation of Expectation-Maximization (SAEM) algorithm implemented 
in the nlmefitsa Matlab function [8]. 

Effects of covariates on the model parameters were assessed using linear regression and a number of 
machine learning regression techniques (artificial neural networks, support vector machines, random forest 
models) [9] using the train function of the R caret package [10], [11]. 

Survival times were analyzed using the Monolix software [12]. A log-logistic distribution was used. We 
utilized the COSSAC (Conditional Sampling for Stepwise Approach based on Correlation tests) covariate 
selection algorithm for automatic building of the covariate model [13]. 

Results: 
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We used parameter values estimated from a previous study on control groups [5] to generate model 
predictions under the assumptions of effect (A) or no effect of therapy on metastatic growth (B). 
Population distributions obtained under the hypothesis A failed to describe the data, whereas simulations 
under hypothesis B reproduced the behavior of the experimental data notably well. This was observed in all 
the treated groups and suggested rejection of the assumption A, with B being a valid possible alternative. 

Based on these results, the K-PD model we developed considered that the antiangiogenic agent affects only 
primary tumor growth. The calibrated K-PD model was able to describe both the structural dynamics and 
inter-subject variability of the experimental data in both vehicle and treated animals. The model 
parameters were identified with good precision (relative standard error ≤ 17%) thanks to the large number 
of animals (n=104). Confirming previous results [5], interanimal variability was mainly characterized by a 
model parameter μ expressing the metastatic potential of the tumor, which was also found to be significant 
for predicting survival. However, the biomarkers included in all tested machine learning 
algorithms demonstrated only limited predictive power on the mathematical parameters (R2 = 0.13 – 0.2, 
best relative error on  9.83  10.70 %). 

Conclusions: 

We developed a K-PD model for describing the effects of neoadjuvant antiangiogenic treatment on primary 
and metastatic growth dynamics. Analysis of a large data set revealed a highly heterogeneous population in 
terms of the metastatic potential parameter μ. Identifying biological predictors of μ would be of critical 
clinical interest by providing more individualized. According to our analysis of the biomarkers as covariates 
in the model, expression of Ki67 and CD31 in the primary tumor, and pre-surgical CTC and MDSC levels are 
not significant predictors of metastatic potential and survival. Although likely to depend on the animal 
model of cancer, these results highlight the need to investigate other molecular and cellular markers. 
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B-12: Sebastien Benzekry Machine learning versus mechanistic modeling for 
prediction of metastatic relapse in breast cancer 

C. Nicolò (1,2), C. Périer (1,2), M. Prague (3, 4), G. MacGrogan (5), O. Saut (1,2), S. Benzekry (1,2) 
(1) MONC team, Inria Bordeaux Sud-Ouest, France (2) Institut de Mathématiques de Bordeaux, France, (3) 

SISTM team, Inria Bordeaux Sud-Ouest, France, (4) Inserm U1219, Bordeaux Public Health, Bordeaux, France 
(5) Pathology department, Bergonié Cancer Research Center, Bordeaux, France 

Introduction:  
Predicting the probability of metastatic relapse for patients diagnosed with early-stage breast cancer is 
critical for decision of adjuvant therapy [1]. Current predictive models usually rely on proportional hazard 
Cox regression models [2]. Using the breast cancer database from the Bordeaux Bergonié Institute (n=1057 
patients), we investigated the potential use of machine learning (ML) algorithms for predicting 5-years 
metastatic relapse (MR) or metastatic-free survival. Both Cox regression and ML algorithms are purely 
statistical methods and do not integrate any biological knowledge. To address this and provide 
personalized, data-informed simulations of the natural history of the disease, we developed a mechanistic 
model of the time to relapse based on the biology of metastatic spread. 

Objectives: 

• Investigate the applicability of machine learning algorithms for prediction of MR 
• Develop a mechanistic model of time to MR 
• Compare both approaches to classical survival models  

Methods: 
Classification algorithms for prediction of probability of MR at 5-years included logistic regression, support 
vector classification, k-neighbors, naïve bayes, random forest, gradient boosting and multi-layer 
perceptron. They were trained using the python package scikit-learn [3]. Due to the small probability of MR 
(<10% at 5 years) possibly impairing the results of classification algorithms, we restricted ourselves to a 
balanced data set with 50% of relapse for this task. To deal with time-to-event data and censoring (not 
handled with classical ML regression algorithms), survival random forests were also investigated [4]. The 
mechanistic model of time to MR was built based on a model using a size-structured population dynamics 
framework (transport partial differential equation) for description of metastasis [5]. This model was 
previously validated against longitudinal experimental data of spontaneous metastatic development after 
surgery in a clinically relevant animal model of breast cancer [6]. A nonlinear mixed-effects model was 
added to the structural model for description of inter-individual variability in the two parameters (growth 
and dissemination), as well as assessment of the impact of covariates, pivotal in the development of the 
model as a personalized predictive tool. Population parameter estimation was performed using the R 
package saemix [7]. To prevent using the same set for training the models and prediction, 10-fold cross-
validation was used to assess the predictive power of the various models. 

Results: 
For the classification task (prediction of 5-years MR probability), the best performances were achieved by 
the random forest algorithm with an accuracy on test sets of 60%, area under the ROC curve of 0.7 and 
positive and predictive values of 60% each. A calibration plot also indicated good predictive power. The 
random survival forest algorithm had similar performances with a concordance index [8] of 0.68, which was 
also the score obtained by a proportional hazard Cox regression model. The mechanistic model was able to 
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provide accurate fits of the survival data with random effects in two key parameters of dissemination and 
growth. Critically, these parameters allowed for integration of biological covariates in a physiologically 
meaningful way. The primary tumor size at diagnosis for instance is a direct variable of the model. In 
addition, significance of covariates (assessed by means of Wald tests) suggested other covariates to be 
either biomarkers of growth (such as the level of the proliferation marker Ki67) or dissemination (such as 
the vimentin level). At the time of writing of this abstract, we can only report on the concordance index on 
the calibration set (0.66) due to the large computational cost (8 hours to fit the population parameters on 
the entire data set on a 24 CPU server). 

Conclusion: 
These findings provide the first step towards the development of a mechanistic model for prediction of 
metastasis. It could yield a personalized prediction tool of help for routine management of breast cancer 
patients. Not only would it provide estimates of the metastasis-free survival probability, but it would also 
generate informative estimates of the invisible metastatic burden at the time of diagnosis and forward 
simulations of future dissemination and growth. To achieve concrete clinical transfer, the model should be 
further refined and validated on external data sets. 
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B-15: João Abrantes Bayesian forecasting utilizing bleeding information to support 
dose individualization of factor VIII 

João A. Abrantes (1), Alexander Solms (2), Dirk Garmann (3), Elisabet I. Nielsen (1), Siv Jönsson (1), Mats O. 
Karlsson (1) 

(1) Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, (2) Bayer, Berlin, 
Germany, (3) Bayer, Wuppertal, Germany 

Objectives: 
Model-based PK-guided dose individualization of factor VIII (FVIII) replacement therapy has been 
increasingly encouraged [1,2]. Yet, mounting evidence shows large phenotypic differences in bleeding 
between patients due to multiple components besides plasma FVIII activity [3,4]. 

The aim of this work was to employ a pharmacokinetic-repeated time-to-event (PK-RTTE) model to contrast 
different sources of patient information in their ability to predict future occurrence of bleeds in severe 
haemophilia A patients receiving prophylactic FVIII replacement therapy. 

Methods: 
Data and model 
Dose, covariate, observed plasma FVIII activity and bleeding time data collected over 6 to 12 months during 
the Long-Term Efficacy Open-Label Program in Severe Hemophilia A Disease (LEOPOLD) clinical trials were 
used in this evaluation [5-7]. 

A previously developed integrated population PK-RTTE-FREM model for FVIII was used for Bayesian 
forecasting [3]. 

Bayesian forecasting and bleeding probabilistic forecast 
Empirical Bayes estimates (EBEs) of PK and hazard parameters were estimated based on the information 
observed from the start of the LEOPOLD study up to the end of each consecutive 24-hour period, i.e. 
repeatedly for each patient up to the end of study. The estimation was performed using three information 
scenarios: 

1. PK - plasma FVIII activity observations; 
2. Bleed - time of bleed, or lack of bleed, during each day; 
3. All - plasma FVIII activity observations, time of bleeds and covariate information. 

Subsequently, the longitudinally estimated individual bleeding hazard was used to derive the individual 
forecasted probability of having a bleed in the upcoming 24-hour period (Pi(bleeding)). 

The effect of the duration of the Bayesian observation period was also assessed by estimation based on the 
past 15 days, 1, 2, 3 or 6 months, to investigate the trade-off between longer periods and the most up-to-
date information. 

Bleeding predictive performance assessment 
The predictive performance of the different information scenarios was assessed by comparing Pi(bleeding) 
with the individual observed occurrence of a bleed on the forecasted day, using separation plots, receiver 
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operating characteristic (ROC) and precision-recall analyses [8-10]. The optimal threshold of Pi(bleeding) in 
the ROC analyses was determined by the Youden’s J statistics. 

Results:  
In total, 101 bleeds were observed in 51 patients aged <12 years, and 530 bleeds in 121 patients aged ≥12 
years, and days with observed bleeds were ~1% of the forecasted days. 

For the group <12 years, the expected number of bleeds over the study period was 66 (PK), 96 (Bleed), and 
90 (All), and for ≥12 years it was 218 (PK), 461 (Bleed) and 500 (All). Separation plots showed a sharper 
increase in Pi(bleeding) associated to days when bleeds occurred for Bleed and All compared to PK, for both 
age groups. The ROC curves showed that Bleed had a predictive power comparable to All, and both were 
superior to PK (Table 1). 

Table 1 - Summary statistics of the ROC analyses for the different information scenarios in patients ≥12 
years. 

  PK Bleed All 

ROC AUC (95% CI) 0.67 (0.65-0.69) 0.78 (0.76-0.80) 0.79 (0.77-0.81) 

Sensitivity (95% CI) 0.59 (0.47-0.68) 0.69 (0.62-0.78) 0.69 (0.65-0.77) 

Specificity (95% CI) 0.68 (0.59-0.80) 0.73 (0.65-0.81) 0.76 (0.69-0.78) 

J 0.26 0.43 0.45 

The differences between scenarios in the group <12 years followed the same trends, with an AUC of 0.67 
(0.61-0.72) for PK, 0.74 (0.69-0.79) for Bleed and 0.77 (0.73-0.81) for All. The results of ROC analyses were 
confirmed by the precision-recall analyses, with PK closer to the performance of a random classifier. 

Using Bleed, patients with a high bleeding risk required shorter observation periods to inform the EBEs, 
namely, between 60 and 90 days prior to the EBEs estimation. No advantage was found to use only the 
most up-to-date information to estimate the EBEs. 

Conclusions: 
A PK-RTTE-FREM model-based forecasting approach considering the efficacy endpoint of interest (bleeds) 
under prophylactic treatment has been developed. Using observed data to contrast sources of information 
to be used in Bayesian forecasting, this work suggests that individual bleed information adds value to the 
optimization of prophylactic therapy in severe haemophilia A. Further steps to optimize the proposed tool 
for FVIII dose adaptation in the clinic are required. 
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Objectives: 

Busulfan (Bu) and treosulfan (Treo) are used in the conditioning prior to paediatric haematopoietic stem 
cell transplantation (HSCT). Myeloid cell suppression leaves patients severely immunocompromised [1,2], 
increasing mortality. 

Bu pharmacokinetics (PK) has been studied [3,4], requiring therapeutic drug monitoring (TDM) and the 
same therapeutic range in malignant and non-malignant disorders. For Treo less is known about the 
therapeutic range [5,6]. 

The objectives of this project were to establish: (i) a PKPD model for the treatment and engraftment effects 
on neutrophil counts comparing Bu and Treo, (ii) the relationship between neutropenia and overall survival 
(OS), (iii) optimised dosing schedules with respect to time to HSCT, and (iv) optimised PK sampling for Bu 
TDM. 

Methods: 

Electronic records from 72 children receiving Bu (7 m-18 y, 5.1–47.0 Kg) and 54 Treo (4 m–17 y, 3.8–35.8 
Kg), were collected. Neutrophil count observations (8,935) were recorded from 1 month prior to 2 months 
post HSCT. Patients suffered from malignant (48 patients) and non-malignant diseases (78 patients). 

Bu concentrations (534) from 72 patients were obtained. Treo samples were obtained in 20 children. 
Population parameters were used for patients without PK samples. NONMEM 7.3 and the FOCE-I 
estimation method were used. The Friberg model [7] was extended to account for HSCT effects. EMAX and 
linear models were tested for drug effect. 

Patient, disease and treatment-related covariates were explored with stepwise covariate modelling (SCM) 
with forward inclusion (p<0.05) and backward deletion (p<0.01). 

The model was used to evaluate dosing schedules of both drugs through simulations. In addition, the 
optimal Bu PK sampling collection times were determined using the R package PopED [8]. 
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A survival analysis performed in R with the package survminer [9] explored the relationship between OS 
and possible predictors (patient, disease and model-derived metrics). 

Results: 

A 2-compartment model best described the concentration vs time profiles of Bu and Treo. A maturation 
function was included affecting clearance (CL) - time to reach half of the adults’ maturation (PM50), and 
the Hill coefficient, fixed to 45.7 weeks and 2.3 for Bu [10], and 42.2 weeks and 2.3 for Treo. 

The final model included separate steady-state neutrophil count (CIRC0) before and after transplant 
(p<0.01). The HSCT was represented by an amount of cells entering the proliferation compartment. HSCT 
enhanced cell proliferation and maturation increasing by 2-fold the related parameters (p<0.01), with a 
latency period of 9 days (99% IIV). Additionally, HSCT elicited a slight but significant (p<0.001) 5% increase 
in the proliferation constant and the feedback parameter γ. 

System parameters (CIRC0, mean transit time (MTT) and γ) were consistent across drugs, estimated as 
0.79·109 cells/L (75.9% IIV), 8.02 days (35.4% IIV) and 0.10 (77.1% IIV). 

The neutrophil decline was modelled with a linear model for Bu (KKILL=0.7) and an EMAX model for Treo 
(EMAX=1.2). The SCM showed that the presence of alemtuzumab enhanced the HSCT effect, resulting in a 
2.9 fold increase in proliferation, transit and circulating constants. 

Results from a multi-variable analysis showed that the area under the neutrophil vs time curve was a 
predictor of OS independent of Bu or Treo AUC. A univariate analysis shown that patients with malignancies 
with an area under the neutrophil vs time curve lower than the median values (125·109cells day/L) had 
significantly increased OS in a 1-year (p=0.045, Hazard ratio (HR)=0.26, 95%CI, 0.06-0.97) and a 3-year 
follow-up (p=0.013, HR=0.27, 95%CI, 0.09-0.81). 

The dosing schedule evaluation showed that a 2-day delay in Treo administration would leave the patient 
less time immunocompromised without damaging the HSCT. 

The optimal design exercise suggested a reduced sampling schedule (4 samples compared to 6), obtaining 
similar parameter precision (maximum bias <10%). 

Conclusions: 

The semi-mechanistic PKPD model developed predicts neutrophil reconstitution trajectories from children 
after HSCT, being a useful tool to improve their clinical management. New dosing (for Treo) and sampling 
schedules (for Bu) are proposed, and increased neutropenia appears to be beneficial for patients with 
malignant disease. 
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Introduction: Acute intermittent porphyria (AIP) is a metabolic rare disease caused by the hepatic 
deficiency of the enzyme porphobilinogen deaminase (PBGD), third enzyme in the heme biosynthesis 
pathway. In this context, therapies that restore enzyme levels in the liver are an appealing option [1]. 
Different mRNA sequences encoding for the PBGD enzyme and encapsulated in different lipid nanoparticle 
formulations have been developed by Moderna, Inc [2]. 

Objectives: The goal of this analysis was to build a mechanistic computational model describing 
longitudinal pharmacokinetic (i.e. liver PBGD activity, PK) and pharmacodynamic (i.e. 24-h urinary heme 
precursors, PD) data obtained in the porphyric pre-clinical arena across different species and using different 
PBGD mRNA compounds in order to project the results to humans. 

Methods: To mimic porphyric acute attacks, porphyrogenic drugs (e.g. phenobarbital) were daily 
administered for 2-5 days over one or more challenges. Then, treated animals received mainly one or up to 
3 doses of different PBGD mRNA compounds -i.e., PBGD mRNA sequence & lipid formulation- on day 2 or 
day 3. In total, 8 different sequences encoding for the PBGD enzyme and encapsulated in 3 different lipid 
nanoparticle systems were available for the analysis. 

The disease PKPD model for AIP C57BL mice is comprised of the following main processes: (i) the PBGD PK 
model describing mRNA release from the formulation, degradation and translation to the encoded PBGD 
protein in the liver, (ii) the disease model characterising the urinary excretion of heme precursors (ALA, 
PBG and porphyrins [POR]) during phorphyric acute attacks in the absence of treatment, and (iii) the PBGD 
activity model accounting for the normalisation of heme precursor in urine in the presence of PBGD 
enzyme. 

To account for the additional liver PBGD activity data from wild type animals (C57BL mice, Sprague Dawley 
rats, New Zealand rabbits and cyno), and the PD data collected in wild type rats and rabbits, species-specific 
parameters were estimated without modifying the structure of the AIP mouse model. Finally, baseline 
PBGD activity levels of AIP patients were used to extrapolate preclinical results to clinical scenarios. 

Results: Assuming formulation-specific release parameters and mRNA sequence-specific degradation 
parameters, the proposed disease PKPD AIP mouse model successfully described all available experimental 
scenarios for the different mRNA compounds using a common model structure. More than two-fold 
differences were observed between formulation release parameters, whereas larger variations were 
obtained across sequences with degradation values ranging between 2.56x10-4 to 8.9x10-3 h-1. Differences 
in the response (i.e. reduction of urinary precursor accumulation) were thus explained at the PK level, since 
PBGD efficacy was preserved across mRNA compounds. PBGD activity levels achieved during the initial 
acute attack were sufficient to inhibit more than 90 % of the drug-induced accumulation of precursors 
(compared to baseline) with the majority of the mRNA compounds except for one mRNA sequence. 
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An adequate data characterization was obtained when using the AIP mice model, but adjusting the PBGD 
activity at baseline for the different species (dose was adjusted per animal weight) and estimating species-
specific excretion rate constants of the heme precursor. The final model was used to predict in silico the 
inhibition that the different mRNA compounds would offer in case of a theoretical acute attack in humans 
assuming a PBGD activity model similar to that of AIP mice. Under these assumptions, predicted liver PBGD 
activity levels in AIP patients would remain above the normal PBGD activity levels -quantified in healthy 
untreated donors- for up to two months after the administration of the standard dose of 1mg/kg of some 
evaluated mRNA compounds to AIP patients. 

Conclusions: In summary, an integrative quantitative framework capable to describe the effects of novel 
mRNA compounds on the accumulation of heme precursors in urine during-induced acute attack across 
different animal species has been proposed. This framework has been used to project the time course of 
the different mRNA compounds to humans. Moreover, it has the potential to be expanded with additional 
information characterizing the time course of urine heme precursors in humans during acute attacks to 
predict in silico the pharmacodynamic response during PBGD mRNA treatment. 
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Objectives: 

Geographic atrophy (GA) is a non-exudative form of age-related macular degeneration (AMD), also called 
dry AMD. Lampalizumab, an antigen-binding fragment of a humanized monoclonal antibody directed 
against complement Factor D, was developed to prevent activation of the alternative complement pathway 
and thus impede the progression of GA and vision loss. Positive results were observed with lampalizumab 
10 mg administered intravitreally every month in the Mahalo study (CFD4870g) which met its primary 
endpoint: the mean difference in GA growth between the monthly group compared to the sham group at 
Month 18 was 0.595 mm2 (80% CI: 0.109, 1.081). In addition, a statistically significant relationship was 
found between cumulative AUC in both serum and aqueous humor and change from baseline in GA area in 
patients positive to complement factor I biomarker. Two Phase 3 studies of more than 900 patients each: 
Chroma (GX29176) and Spectri (GX29185) were run to assess the efficacy and safety of lampalizumab 
versus sham. Both Phase 3 studies failed to demonstrate the efficacy of lampalizumab 10 mg given 
monthly, the highest drug exposure tested.[1] The objective of this work was to develop and validate a 
disease progression model for GA using Chroma and Spectri data and propose a model-based approach to 
assess treatment effect in GA to aid drug candidate selection at an early stage of clinical drug development. 

Methods: 

Both Spectri and Chroma data were used as well as data from Omaspect (GX30191), the long-term safety 
extension study which patients who completed parents studies i.e. Spectri or Chroma could enrol to. GA 
area was assessed by at 24, 36, 48, 72 and 96 weeks in Spectri and Chroma and every 24 weeks in 
Omaspect up to 96 weeks. As lampalizumab development was interrupted prematurely, the longest GA 
area follow-up reached 3.3 years. Spectri data was used to develop the disease progression model, 
comprising 970 patients (including patients receiving lampalizumab), among those 411 were enrolled into 
Omaspect, 6755 GA areas were used. The model structure was similar to the one published by Delor et al. 
based on the disease onset time concept.[2] The individual GA areas at the start of Spectri ranged from 
2.54 to 30.56 mm2; indeed, patients were not at the same disease stage at the time of enrolment in the 
study. Therefore, there was a need to accurately reconstruct the full disease progression trajectory. The 
disease onset time approach leverages data from each subject itself informing a portion of the trajectory. 
The rate of increase in GA area was modelled as the sum of a linear increase with time and a first order 
term adjusting for individual contribution to disease progression. A first model qualification was performed 
on Spectri (including Omaspect portion) data using visual and posterior predictive checks. Then, Chroma 
(including Omaspect portion) data was used for external validation of the model. 

Results: 

The disease progression model structure using the disease onset time concept enabled the reconstruction 
of the disease trajectory over more than 12 years. While disease progression appeared to be linear with 
time over the clinical trial duration of 2 years, GA seemed to progress in a non-linear way (faster than 
linearity with time) over 12 years. The disease progression model showed that on average patients started 
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their disease 5.2 years before Spectri enrolment but with large inter-patient variability (1.3 to 18.5 years 
prior to enrolment). The GA area at study entry was a structural covariate in the model. Disease 
progression was faster for patients with GA area at study entry >6 mm2, in patients with multifocal lesions 
(+16% versus unifocal) and in patients with non-subfoveal lesions (+15% versus subfoveal). The model was 
qualified based on Spectri data and a successful external validation was performed versus Chroma data on 
901 patients. 

Conclusions: 

A disease progression model for GA was developed and externally validated. It can be used to assess 
treatment effect for future drug candidate in GA. Indeed a model-based approach comparing the model-
predicted GA area (only due to disease progression) to the corresponding observations (due to disease 
progression and potential treatment effect) can represent a complementary analysis to classical statistical 
analyses based on change from baseline and improve future drug development decisions. 
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Objectives:  
Clinical studies are often performed to assess a certain primary endpoint or event (e.g. manifestation of 
diabetes), in the presence of other competing risk events [1], i.e. the occurrence of an event that prevents 
the primary event from being observed, e.g. dropout. If these competing risk events are dependent on the 
primary event e.g. if dropout of a patient reflects a greater risk of diabetes manifestation, then predicting 
the primary event in a patient with the competing risk event is impossible. Marginal survival functions, 
when risks are dependent, are inestimable from the data and Kaplan-Meier estimators or standard survival 
models in such case result in profoundly biased estimates of the cumulative probabilities of the competing 
risks. When treatment groups are compared, the relative differences between treatment groups may be 
biased [2,3]. These are consequences of the underlying assumption that censoring is independent of the 
primary event and that the survival probability is constant over the occurrence of competing events. Also, if 
subjects are observed only at finite clinical visits, i.e. interval-censored data, there is an additional 
uncertainty of whether the patients experienced one or more of the competing events between the last 
event-free visit and the diagnostic visit. In this work, we considered model-based analysis of competing and 
semi-competing risks to describe data from the Finnish diabetes prevention study (FDPS) [4]. Afterward, we 
explored potential covariates on the different risks and investigated the predictiveness of various 
assessment methods of insulin sensitivity (SI) for the onset of development of type 2 diabetes (T2D). 

Methods:  
The FDPS is a randomized controlled study carried out in Finland 1993-2001 with follow-up until 2010. Data 
was collected from 522 overweight middle-aged subjects with impaired glucose tolerance, randomly 
assigned to control and lifestyle intervention. The aim of the FDPS was to investigate the effect of lifestyle 
changes among subjects with impaired glucose tolerance on the development of T2D. Oral glucose 
tolerance test (OGTT) for all subjects was performed yearly for assessment of subjects’ clinical status, and 
subjects with 2 hr postprandial glucose concentrations > 200 mg/dL were diagnosed with T2D and excluded 
from the study. From the yearly OGTT, SI could be measured by nine surrogate methods [5].  
During the FDPS, subjects failed by one of the three possible and mutually exclusive events: developing 
T2D, dropping out (DO), or death. Here, DO refer to stopping treatment, and does not mean lost to follow 
up as all subjects were followed until 2010. Once the subject had failed, his follow-up was started. During 
the follow-up, subjects cannot drop out and T2D cannot censor death (semi-competing process). There are 
five states that subjects could experience during the study and its follow-up: healthy (state 1), T2D (state 2), 
DO (state 3), DO-T2D (state 4; subjects developing T2D after DO), and death (state 5). All subjects were 
healthy at enrolment (state 1), and during the study, they could stay healthy (state 1), develop T2D (state 
2), drop out (state 3), or die (state 5). The study ended once a subject moved from state 1 to any other 
state. After the study (during follow-up), subjects with T2D could stay in state 2 or die (state 5), subjects 
who dropped out could remain healthy in state 3, develop T2D (state 4) or die (state 5) and subjects who 
dropped out and then developed T2D could stay in state 4 or die (state 5). These restrictions defined the 
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nature of the different risks and the model’s system of differential equations. Different hazard distributions 
and predictors were investigated for the transition intensities (λij) from state i to state j. We tested three 
hypotheses: the risk of death for healthy subjects is independent of DO (i.e. λ15=λ35), the risk of death for 
subjects with T2D is independent of DO (i.e. λ25=λ45) and dropout out is non-informative for developing T2D 
(i.e. λ12=λ34). Yearly measured covariates including the nine indices for measurement of SI were tested one 
by one prospectively on the different λs. 

Results:  
The model could jointly describe the semi-competing terminal process of death and the two competing 
non-terminal processes of developing T2D and DO while accounting for the interval-censoring. The model 
was non-stationary in λ12 and λ15 and homogenous in λ13 and λ34. Transition intensities to death were indeed 
independent of DO and were described by scaling Gompertz-Makeham formula estimated from the 
Swedish population, to adapt for the different death incidences observed in the FDPS data. The estimated 
scaling parameters reflected a 20% higher risk of death among subjects with T2D than others, that was not 
significant when the data was analyzed by the standard survival cox models [6]. The model showed that 
informative DO is present and subjects are more likely to drop out if they were healthier and thus, after DO 
they were at ~ 3.5 lower risk for developing T2D than subjects who stayed in state 1. The model identified 
age and sex as predictors on dying, intervention and baseline BMI on λ13, and intervention, baseline BMI, 
time-dependent HbA1c and time-dependent SI measurements to be the significant covariates on λ12. 
QUICKI, HOMA and Avignon indices as time-varying measurements of SI surpassed the other investigated 
indices, while baseline QUICKI and HOMA were the best to predict the future onset of T2D. The effects of 
the significant covariates on the competing risks at different combinations can be easily assessed by 
plugging the desired covariates’ values in the model’s system of equations. Visual predictive checks of the 
model stratified by subjects’ treatment group showed a nice agreement between the simulated and 
observed proportion of subjects in the different states at different times. 

Conclusions:  
We successfully developed a multi-state model for competing risks analysis of data from the FDPS. The 
model described the data, characterized mechanisms leading to incomplete observations and accounted 
for the occurrence probability of the non-terminal processes in the interval between visits as only death 
dates can be retrieved exactly. The model allowed simultaneous estimation of covariate effects on all λs. 
Though with a different methodology, we successfully identified the same covariates recently used for 
stratifying patients with T2D into subgroups with differing disease progression and risk of diabetic 
complications [7]. Finally, our model is naturally extendable for PK/PD joint modeling of drugs, biomarkers 
and competing clinical outcomes. This framework, with suitable adaptions, may find widespread 
applicability for competing risks interval-censored longitudinal data instead of the currently used 
misspecififed standard survival models. 
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(1) Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, 
Leiden University, Leiden, The Netherlands (2) Intensive Care and Pediatric Surgery, Erasmus Medical 

Center-Sophia Children’s Hospital, Rotterdam, The Netherlands (3) Division of Neonatology, Department of 
Pediatrics, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands (4) Department 

of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands 

Introduction:  

Prolonged treatment with analgesics and sedatives can cause iatrogenic withdrawal syndrome (IWS) in 
children being weaned from these drugs (1). Reported incidences of IWS in the pediatric ICU are high and 
variable (5–87%), suggesting a need for both individualized weaning strategies and monitoring of IWS. 

In the pediatric ICU of the Dutch Sophia Children’s Hospital, IWS monitoring relies on the SOSwithdrawal, a 
validated, objective scale that scores the presence of 15 withdrawal-associated symptoms (1,2). Some 
symptoms may however also be caused by pain, undersedation or delirium, complicating IWS monitoring. 
In addition to the SOSwithdrawal,  the nurse also forms an expert opinion of withdrawal severity (2). In this 
study, the expert opinion was scored on a numeric rating scale (NRSwithdrawal) ranging from 0 (no withdrawal) 
to 10 (worst withdrawal), taking contextual factors such as the possibility of co-occurring pain, 
undersedation or delirium into account. 

As a first objective, we aimed for a model-based quantification of the dynamics of drug dependence and 
withdrawal severity to ultimately individualize weaning strategies based on a child’s prior use of analgesics 
and sedatives. For this application, we developed a novel mechanism-based iatrogenic withdrawal model. 
This model was based on the NRSwithdrawal scores, as they provide more global albeit subjective information 
regarding withdrawal severity. 

The second objective was to increase information obtained from the SOSwithdrawal scale by performing an 
item response theory (IRT) analysis on its item-level data. As the unidimensionality assumption is violated 
by the impact of pain, undersedation and delirium, regular IRT modelling was not be applicable (3) and we 
therefore developed two extensions of regular IRT: the supervised IRT (sIRT) (4), and supervised multi-
dimensional IRT (smIRT). The rationale of these supervised IRT methods is to leverage the expert opinion 
contained in the NRSwithdrawal score to improve the quantification of withdrawal severity from the objective 
symptom data. 

Methods:  

Clinical study 

In 81 children (aged 1 month to 17 years), 1782 paired IWS assessments were performed with the 
SOSwithdrawal and NRSwithdrawal scales, during an observational clinical study (2). NRSwithdrawal scores range from 
0 (no withdrawal) to 10 (worst withdrawal possible). 
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Characterizing the dynamics of NRSwithdrawal  

A novel mechanism-based withdrawal model structure was developed to characterize the development 
and disappearance of drug dependence over time. The model contains hypothetical ‘dependence 
compartments’, which equilibrate with the central pharmacokinetic compartment at an estimated rate. 
Published population pharmacokinetic models were used in combination with individual dosing information 
to generate population predicted plasma concentration-time profiles in each patient of all key analgesics 
and sedatives (i.e. morphine, fentanyl, methadone, midazolam, lorazepam, propofol, esketamine and 
clonidine). Withdrawal severity was modelled using a linear relation with the drug deficiency, defined as 
the difference between the concentration in the ‘dependence compartment’ and the predicted 
concentration in the central compartment. A generalized truncated Poisson model with Markovian 
transition probability inflation was used to respect the bounded integer nature of the NRSwithdrawal (5). Using 
simulations, different weaning strategies were compared for different drugs. 

Supervised IRT modelling of SOSwithdrawal items 

Pharmacometric models based on item-level data of the SOSwithdrawal were developed using three IRT-based 
modelling techniques, i.e. regular IRT, sIRT and smIRT. For the sIRT and smIRT, the nurse’s NRSwithdrawal score 
was used as a ‘supervising variable’ to guide the latent variable of the model towards withdrawal (3). For 
the smIRT, one or two unsupervised latent variables were added to the sIRT model to limit violations of the 
local independence assumption, by accounting for the impact of conditions other than IWS that affect the 
SOSwithdrawal items. 

To allow for a comparison of linear association between the NRSwithdrawal score and the latent variables of 
the regular IRT, sIRT and smIRT models, the parameters of the sIRT and smIRT models were fixed to their 
estimated values, and refitted to the data in the absence of the NRSwithdrawal scores, re-estimating only the 
distribution of a logit-normally distributed latent variable on the same 0–10 scale as the NRSwithdrawal scores. 
The AIC of linear models in which the total composite score of the SOSwithdrawal or the latent variable of a 
particular IRT model was the predictor, and the NRSwithdrawal score the dependent variable. 

Results: 

Using the mechanism-based withdrawal model, the dynamics of withdrawal and dependence could be 
established with statistical significance for fentanyl (p< 10-6), morphine (p=0.043) and esketamine 
(p=0.002). The estimated rate constant of the drug dependence compartment was higher for fentanyl 
(0.265 h-1) compared with esketamine (0.018 h-1) and morphine (0.008 h-1). As a result the dynamics of 
dependence for fentanyl are also affected by its clearance. For all drugs, the weaning period should be 
increased with increasing drug levels prior to weaning. 

Compared with the total SOSwithdrawal score, the latent variable of the regular IRT model showed a weaker 
association with the NRSwithdrawal score (ΔAIC = +180.5). The re-estimated latent variables of the two 
supervised IRT models had a stronger association than the total SOSwithdrawal score, even when removing the 
NRSwithdrawal after estimation of the supervised IRT models, with the strongest association being observed 
with the smIRT with two latent variables (ΔAIC = -223.7). Interestingly, the residual item-pair correlations in 
the sIRT model corresponded with clinical knowledge regarding the SOSwithdrawal items that are associated 
with pain and undersedation, and these correlations were attenuated in the smIRT models. 

Conclusion: 

The mechanism-based withdrawal model dynamically predicts IWS from fentanyl, morphine and 
esketamine and showed that the optimal strategy for weaning of drug-dependent children depends on 
both the type of drug and the drug levels prior to weaning. 
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For the SOSwithdrawal, where individual items are not only affected by withdrawal, regular IRT modelling was 
worse in terms of quantifying withdrawal, than analysis based on total SOSwithdrawal score. The quantification 
of withdrawal severity was improved when using sIRT and smIRT, in which the subjective NRSwithdrawal score 
was used to ‘guide’ the latent variable towards withdrawal. Using the supervised IRT models developed 
here to estimate the IWS severity from symptoms alone, can be useful when NRSwithdrawal scores are lacking, 
or as a supplement to the subjective NRSwithdrawal score. 

References:  
[1] Ista et al. Intensive Care Med. 2009;35(6):1075-1081. 
[2] Ista et al. Pediatr Crit Care Med. 2013;14(8):761-769. 
[3] Ueckert. CPT PSP. 2018;7(4):205-218. 
[4] Ide et al.Knowl Inf Syst. 2017;51:235-257. 
[5] Plan et al. Clin Pharmacol Ther. 2012;91(5):820-828. 
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C-03: Elena Tosca Dynamic Energy Budget (DEB) based models of tumor-in-host 
growth inhibition and cachexia onset 

E. M. Tosca (1), M. Rocchetti (2), E. Pesenti (3), P. Magni (1) 
(1) Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, I-27100 Pavia, 

Italy; (2) Consultant, Milano, Italy; (3) Accelera srl, Nerviano (MI), Italy. 

Objectives: The great contribution of PK-PD tumor growth inhibition (TGI) models in the anticancer drug 
development process is already well-established. However, models currently available are always focused 
only on the drug efficacy assessment and, completely neglecting the host organism, overlook the 
drug/tumor-related toxic effects [1, 2][PM1] . Actually, host conditions significantly influence tumor growth 
that, in turn, has a relevant impact on the host. Severe body weight (BW) loss (cachexia) and reduced food 
intake (anorexia) are among the main causes of cancer death and, also, relevant endpoints in the preclinical 
studies. Finding the best compromise between efficacy and toxicity is the goal of any anticancer therapy. In 
absence of appropriate models that consider both the tumor and host body interactions (tumor-in-host 
models) and the anticancer drug effects, this efficacy/toxicity evaluation is based on heavy and time-
consuming trial-and-error procedures. Here, a new modeling approach able to describe tumor-in-host 
growth dynamics and cachexia onset during an anticancer treatment is proposed to better exploit data 
routinely generated in the preclinical phase of an oncological drug development process. 

Methods: Tumor-in-host DEB-based model: Following the van Leeuwen work [3], the Dynamic Energy 
Budget (DEB) theory [4] is adopted as general framework to describe the host organism. The dynamics of 
host body, composed by the structural biomass and the energy reserve, follow from an energy balance. 
Tumor is conceived as an additional component able to subtract a fraction ku of the host energy for its 
maintenance and growth. As tumor exploits host resources, in certain conditions, the organism can even 
degrade its structural biomass to survive and, at the same time, to satisfy the tumor energy demand 
(tumor-related cachexia). This condition can be further worsened by the negative impact of tumor 
progression on host energy intake (tumor-related anorexia). 

Tumor-in-host DEB-TGI models: The tumor-in-host DEB-based model is extended and adapted to describe 
the effects of different anticancer treatments. 1) Cytotoxic agents:  Drug exerts a direct killing effect on 
tumor cells, modeled as in the Simeoni model [5], and an inhibitory effect on the host assimilation. The 
latter accounts for the temporary decreased energy intake (drug-related anorexia) due to drug side effects 
and followed by host BW loss (drug-related cachexia). 2) Anti-angiogenic agents: An inhibitory effect, linked 
to the drug concentration, is added on ku fraction to account for the modification of the energy partition 
between tumor and host that follows the reduction of tumor vascularization due to the anti-angiogenic 
therapy. 3) Combination of anti-angiogenics with chemotherapy: A joint model, incorporating both the anti-
angiogenic and cytotoxic DEB-TGI models, is used to predict tumor and host response to a combination 
therapy under a ‘no-interaction’ assumption [6]. The nature of combination (additivity/synergisms/ 
antagonisms) can be evaluated comparing model predicted and observed tumor weight (TW) and host BW. 

Experimental data refer to TW and net host BW of 16 xenograft mice studies involving 6 tumor cell lines 
and 14 anticancer agents administered at several doses and schedules [7,8,9]. Furthermore, a study 
assessing etoposide (ETO) effects on both tumor-free and tumor-bearing Wistar rats is considered [10]. 
Average and individual data are analysed in Monolix 2016R1, by a naïve average and a non-linear-mixed-
effect approach, respectively. 
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Results: Tumor-in-host DEB-based model: The model, identified on control animals, successfully describes 
TW and host BW, predicting a S-shape tumor growth profile that directly follows from physiological 
hypothesis on tumor-host energetic interactions. Cytotoxic agents: For 8 xenograft studies involving 3 
tumor lines, the model is able to simultaneously describe and predict TW and host BW growth in control 
and treated mice with both novel anticancer compounds and well-known drugs (paclitaxel, 5-FU, cisplatin, 
vincristine, vinblastine and gemcitabine) [7]. A slightly revised model formulation, combined with the use of 
intratumoral concentration as driver of tumor kinetics, successfully describes the ETO effects on Wistar rats 
accounting also for its schedule-dependence [10]. This well-design experiment, including treated and 
untreated tumor-free animals, allows to fully exploit model capabilities in describing and discerning all the 
in vivo growth dynamics. Anti-angiogenic agents: The tumor-in-host DEB-based TGI model, adapted for 
cytostatic therapy, is successfully applied to 7 xenograft mice experiments assessing the Bevacizumab (BVZ) 
effect on 3 tumor cell lines [8]. In this case, in addition to the drug potency estimates, quantitative 
measurements of tumor-related cachexia are provided. Finally, a hypoxia-triggered resistance model allows 
to describe the decreased BVZ efficacy observed after prolonged treatments [9]. Combination of anti-
angiogenics with chemotherapy: A combination study on xenograft mice treated with BVZ, 2 doses of NMS-
937H or a combination of both is successfully analysed [8]. Model parameters estimated on the single-
agent arms are used to predict the expected tumor and host response in the combination groups. 
Comparing the predicted curves with the observed data, no significant departures from additivity are found 
for both efficacy (TGI) and safety (cachexia) profiles. However, an increment in the TGI due to BVZ and 
NMS-937H coadministration highlights the advantage of the combination strategy. 

Conclusions: A simultaneous modeling of tumor and host organism interactions during anticancer 
treatments is proposed on the basis of the DEB theory. This approach, suitably adapted to several 
preclinical experimental contexts, is able to integrate all the different aspects characterizing the in vivo TGI 
studies: drug cytotoxic or cytostatic activity on tumor, onset of drug/tumor-related cachexia and anorexia 
and influence of host condition on tumor growth. This allows for the first time to investigate separately BW 
loss due to tumor progression and to treatment, providing in addition better estimates of anticancer drug 
efficacy that is disentangled from TGI due to depletion of host energy. These findings strongly suggest the 
adoption of the tumor-in-host approach in the preclinical oncological setting for a joint assessment of drug 
efficacy and toxicity on animal BW and for a better protocol design of the experiments. Finally, the 
successfully application of the DEB-approach to different host species, several anticancer agents based on 
different mechanisms of action and experimental settings, including combination therapies, encourages 
further investigations. Specific modeling efforts are focusing on taking advantages of the DEB-based 
paradigm as preclinical to clinical translational approach. Preliminary results are encouraging. 
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C-07: Kristin Karlsson Regulatory model-informed drug discovery and development in 
EU – News flash and examples 

Kristin E. Karlsson(1),(3) and Flora Musuamba Tshinanu(2),(3) 
(1) Swedish Medical Products Agency, Uppsala, Sweden, (2) Federal Agency for Medicines and Health 

Products, Brussels, Belgium, (3) EMA Modelling and Simulation Working Party 

Objectives: To provide an update on modelling and simulation involvement in the EU regulatory activities 
and procedures and highlight the latest news regarding MIDD in EU regulatory framework and to present 
examples of procedures where model-based approaches were essential for decision making. 

Overview/Description of presentation: The presentation will provide some key statistics on M&S related 
regulatory activities and highlight some regulatory documents where model-based approaches are 
described and promoted. Examples of documents that have been published within the last year are 
Extrapolation Reflection Paper[1], Modelling and Simulation Working Party Paediatric Q&A[2], and 
Guideline on the reporting of physiologically based pharmacokinetic modelling and simulation[3]. 
Furthermore, there is ongoing work within various aspects of paediatric drug development, and the 
strategy document EMA Regulatory Science to 2025. 

The second part of the presentation will focus on EU regulatory examples where model-based approaches 
played a vital role in the development and authorization of medicinal products. There are numerous 
examples of where model-based approaches have proven to be pivotal for the benefit/risk assessment in a 
market authorization application. Other regulatory interactions with increasing visibility of model-based 
drug development are central scientific advices (through the Scientific Advice Working Party) and paediatric 
investigation plans (through the Paediatric Committee) will be highlighted.    

References:  
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extrapolation-development-medicines-paediatrics-revision-1_en.pdf 
[2] https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/clinical-
pharmacology-pharmacokinetics/modelling-simulation-questions-answers 
[3] https://www.ema.europa.eu/en/about-us/how-we-work/regulatory-science-2025 
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C-08: Sylvie Retout A model-based extrapolation enabled labelling of emicizumab in 
haemophilia A paediatric patients <1 year old despite lack of clinical data 

Sylvie Retout, Hans-Peter Grimm, Claire Petry, Christophe Schmitt, Nicolas Frey 
Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, 

Switzerland 

Objectives: Emicizumab is a bispecific humanised monoclonal antibody (mAb) that binds activated factor 
(F) IXa and FX to activate FX, mimicking the function of missing or defective FVIIIa in patients with 
haemophilia A (PwHA) [1]. European Medicine Agency (EMA) among others approved a maintenance dose 
of 1.5 mg/kg/week from birth to adulthood in PwHA with inhibitors against FVIII. No data in PwHA 

Methods: A popPK model was available for emicizumab, developed on a dataset of 191 PwHA, including 17 
PwHA aged 2 to < 6 y, and only 4 PwHA aged 1 to < 2 y. The model included a body weight (BW) effect on 
the apparent clearance (CL/F) and volume, with estimated exponents of 0.891 (RSE=4.0%) and 1.02 
(RSE=3.5%) respectively; CL/F was also impacted by albumin concentrations, increasing with decreasing 
albumin levels. For the PK extrapolation to PwHA < 1 y old, a known albumin variation with age [2] was 
implemented in the popPK model and the increase in BW with age was accounted for by using an actual 
covariate database from 693 infants tau,SS) at the dose of 1.5 mg/kg/week in PwHA 1 y old could be used to 
extrapolate CL/F to PwHA < 1 y old; (2) or assuming that CL/F follows an age-based maturation function 
combined with the classical fixed allometric exponent of 0.75 for BW effect as described in [4]. Simulated 
AUCtau,SS were then translated into bleeding event risk using an existing exposure–efficacy model [5]. 

PBPK simulations using SimCyp Version 15 [6] were also carried out to investigate whether a more 
mechanistic description of age-related differences could further improve the confidence in PK projections, 
especially in PwHA 

Finally, the emicizumab popPK model was compared with published popPK models of other mAbs in 
children and infants. 

Results: The popPK simulations with the maturation function predicted the lowest reduction of AUCtau,SS 
(27%) compared to PwHA >1 y old. At those levels, the efficacy of emicizumab is expected to be 
maintained, with exposures still at the plateau of effect. 

Predicted CL/F with PBPK approach were 15%-20% higher than the ones predicted by the emicizumab 
popPK model for patients aged 3 months to 1 y and twofold higher for neonates. However, those 
predictions remained highly uncertain due to the lack of validation of the PBPK approach for mAbs in 
paediatrics, the absence of data for the ontogeny of key mechanisms (e.g., FcRn), and also the fact that the 
PBPK model over-predicted CL/F (up to +40%) in age ranges where patient data were available. Those PBPK 
predictions were however provided to the EMA, highlighting that the methodology was not robust enough 
yet to confidently extrapolate PK in infants. 

Lastly, of the very few published popPK models of mAbs [8], only the palivizumab model [4] included an 
explicit age-based maturation function, whereas the others included only allometric scaling approach using 
BW. The palivizumab model was developed on a dataset of 1684 patients from birth to 2 y of age, and its 
use of a maturation function was therefore considered as the most robust extrapolation approach. The 
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emicizumab CL/F was found very comparable to the current knowledge regarding CL/F of mAbs in 
paediatrics, especially to palivizumab’s, even for PwHA 

Conclusions: By leveraging emicizumab models (i.e: popPK, PBPK and exposure-response), together with 
literature data, the proposed dosing of emicizumab for young infants was deemed appropriate although no 
data in PwHA < 1 y old were available. That full model-based extrapolation, together with a high unmet 
medical need and assumptions for disease and PK-pharmacodynamics similarities compared to PwHA >1 y 
old, was considered acceptable and led to the approval of emicizumab in PwHA with FVIII inhibitors in all 
age groups in the European Union countries. 
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[6] Simcyp Version 15.1, Simcyp Limited. Sim-Healthy Volunteer population Library. July, 2016. 
[7] Li L et al. AAPS J. 2014;16(5):1097-109. 
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C-12: Theodoros Papathanasiou Model based optimization of dose-finding studies for 
drug-combinations. 

T. Papathanasiou 1,2, A. Strathe 2, R.V. Overgaard 2, T.M. Lund 1, A.C. Hooker 3 
1 Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of 
Copenhagen, Copenhagen, Denmark; 2 Novo Nordisk A/S, Quantitative Clinical Pharmacology, Søborg, 

Denmark; 3 Department of Pharmaceutical Biosciences, Uppsala University, Sweden 

Objectives: 

Combinations of pharmacological treatments are increasingly being investigated for potentially higher 
clinical benefit, especially when the combined drugs are expected to act via synergistic drug interactions 
[1,2]. The clinical development of combination treatments is particularly challenging, especially during the 
dose selection phase, where a vast range of possible combination doses exist [3]. Traditionally, dose-finding 
drug-combination studies are conducted based on factorial designs and variations thereof [3]. While simple 
in their conception and construction, the choice of the investigated dose levels is often empirical. 

Model-Based Drug Development (MBDD) has been proposed by regulatory agencies, academia and 
pharmaceutical industry as an efficient approach to mitigate the risks of dose selection and improve 
confidence in decision-making [4, 5]. As part of MBDD, exposure-response (E-R) analyses that associate an 
exposure metric, such as average concentration in steady state, and a continuous response variable 
measured at a single time point, have become a critical component for supporting dose selection for phase 
III [6]. It has previously been shown that dose selection can be improved though the modeling of exposure-
response (E-R) relationships of combinatory drug effects and that the study design is important in correctly 
characterizing these models used for dosing decisions [3]. 

In this work we investigate how dose selection can be optimized in drug-combination studies through the 
use of optimal design methodology in tandem with E-R analyses. The optimized designs are compared to a 
typical drug-combination dose-finding design (3x3 factorial) [3] in regard to overall parameter accuracy and 
precision, precision of pre-specified effect level predictions and their ability to correctly identify the 
minimum effective combination dose (MEDA,B) to be brought forward to a confirmatory clinical trial. 

Methods: 

Model based optimizations were performed using the R package PopED [7]. The true combination model 
was assumed to be an effect addition model with one interaction term [2,3], where the pharmacodynamic 
effect is driven by steady state concentrations of both drugs (Css). The E-R relationships of the individual 
mono-components were assumed to be described by Emax models with different maximal effects and their 
pharmacodynamic interaction was assumed to be synergistic [3]. 

Optimizations of the allocations of the investigated dose levels were performed using a local optimality 
criterion (D-optimality) to maximize the precision of all model parameters in a simulated exposure-
response (E-R) surface [2,3]. ED-optimality with a uniform distribution around the effect parameters was 
also used to obtain a generalizable design for situations where uncertainty around the effect parameters is 
present. 



 

Page | 44  

Since the objective of dose-finding studies is to identify the best doses to be brought forward to 
confirmatory trials, good precision around a target effect level is highly desirable. In the case of single-drug 
therapies, where the treatment response is driven by the exposure of a single drug, trial optimization 
towards this goal can be achieved by either approaching the target exposure level as a model parameter 
with uncertainty that should be minimized or by constructing designs that minimize the asymptotic 
variance of the target concentration estimates [9]. For drug combinations, such approaches are 
complicated by the fact that the treatment effect is driven by the combination of two variables (i.e. 
exposures of Drug A and Drug B). The approach used here was to utilize an optimality criterion that aims to 
reduce the average prediction variance in a specific region of the three-dimensional E-R surface (V-
Optimality) [10]. V-Optimal designs can be hard to construct and generally lead to poor parameter 
estimation [10], which is undesirable when performing a model-based analysis. To mitigate this, we 
considered a compound criterion incorporating D- and V- optimality characteristics (D/V-optimality), with 
equal contribution from both criteria. 

Stochastic simulation and estimation (n=1000) was performed to determine the parameter precision 
resulting from the reference and optimized study designs. Overall parameter precision was defined as the 
average %RSE of all the parameters in the model for each competing design, which was compared to the 
same value calculated for the reference study design. All simulations and estimations were performed in 
NONMEM version 7.3 [11] using PsN [12]. 

Lastly, all designs were evaluated regarding their ability to correctly identify the correct minimum effective 
combination dose (MEDA,B), defined as the dose leading to a wanted pre-specified effect level that 
simultaneously minimizes the needed dose from both mono-components. The MEDA,B was calculated using 
the true and SSE derived model parameters and the probabilities of identifying the correct dose A alone 
(MEDA), correct dose B alone (MEDB) and the true combination dose (MEDA,B) were derived (where correct 
is assumed to be a dose that is within 20% of the true MEDA,B). 

Results: 

The D-efficiency of the D-optimal design as compared to the reference design was 141%. When the D/V-
optimality criterion was used, the D-efficiency was slightly lower (107.5%). A slight loss in the D-efficiency 
of the globally optimal design was observed 98.7%. 

The overall parameter precision was improved in the optimized designs. The average %RSE for the D-
optimal design was 13.6%, followed by the D/V- and ED-optimal designs (16.1% and 17.9% respectively). 
The %RSE for the reference design was 17.3%. 

Regarding correct MEDA,B identification, the highest probabilities were observed for the D/V-Optimal design 
(88.2%), followed by the D- and ED-optimal design (76.7% and 73.7% respectively). The lowest probability 
for identifying the correct MEDA,B was seen when the reference design was used (67.7%). 

Conclusions: 

Our study results indicate that using optimal design in tandem with E-R analyses can be an attractive 
method for dose allocation in drug-combination dose-finding studies. Optimized studies significantly 
improved the extracted amount of information, allowing for the same information from as little as 60% of 
the subjects as compared to a typical drug-combination design. Additionally, the flexibility in defining the 
optimality criteria can help improve the probability of identifying the optimal combination dose to be 
brought forward in late stage development. 
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Objectives: Nonlinear mixed effect models (NLMEM) are now becoming a central tool in viral dynamic 
models to estimate parameters of viral pathogenesis and identify relevant factors limiting viral replication 
[1–3]. However data fitting and model building remain challenging due to the fact that i) models often 
involves poorly identifiable parameters and/or ii) several structural models with different biological 
assumptions may provide nearly similar fits to the data. To overcome these issues, the most standard way 
is to fit the data using a set of candidate models and then to retain the model providing the best fit to the 
data using standard tools of model selection (such as AIC). However, this approach of Model Selection (MS) 
ignores the uncertainty due to multiple tested models and thus is subject to overoptimistic conclusions [4]. 
Here we assess the benefit of using of model averaging (MA) to provide better parameter estimates and 
more robust predictions, an approach that weighs predictions of different candidate models [4][5]. 

Methods: We evaluated MA by simulations in two different settings, both in the context of an acute viral 
infection, using parameters estimated during Ebola virus infection [6]. In the first setting, we focused on 
estimation step and provided confidence intervals of estimated parameters when some model parameters 
are fixed to arbitrary values. Data were simulated according to a target cell limited model [7] where both 
the eclipse phase rate and the initial viral load inoculum cannot be identified and were fixed to different 
plausible values [8]. Parameters and confidence intervals were then estimated and we compared the 
coverage rate of the estimated parameters, in particular the reproductive ratio number, R0, under MA, MS 
and the true model used for simulation. 

In the second setting we focused on the predictions derived from MS and MA and considered, in addition 
to the target cell limited model, 4 models describing the putative role of the innate and adaptive immune 
system in clearing infection. The magnitude of immune response was comparable between models and 
they provided similar fits to the data. For each trial replicate, we predicted the median AUC under 
increasing treatment effects (from 10% to 99.9%) for MA, MS and the true model used for simulations. 
Relative root mean square errors (RRMSE), relative bias (RB) were calculated to compare prediction 
precision. Finally, the Kullback-Liebler divergence of the median AUC (KLDAUC) were computed to evaluate 
MA and MS predictive performances. KLDAUC represents the divergence between the true and estimated 
probability distributions. 

Each simulated trial included 30 individuals drawn every 3 days from day 3 to day 18. Under each setting 
and for each trial replicate, parameters were estimated by maximum likelihood using the SAEM algorithm 
implemented in Monolix2018R2 and standard errors were obtained by stochastic approximation. 

Results: Regarding the first simulation setting, the true model was selected in the different scenario in less 
than 63% of the cases. This, therefore, led to a poor coverage of R0 was comprised between 0.37 and 0.62. 
This was corrected using MA, where the coverage rates increased above 0.90 in all cases. In the second 
setting, MA was associated with a better prediction of the median AUC compared to MS. When simulating 
with efficacy of 99%, both RRMSE and RB lowered from 52.9% to 36.7% and 12.3% to 6.7% respectively. 
Using MA, the mean KLDAUC was reduced by 50% compared to MS. Finally, the true model used to simulate 
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the data was not selected up to 49% of the cases leading then to wrong conclusion about the mechanism of 
the immune response. 

Conclusions: This work shows how model selection, by ignoring the model uncertainty, can lead to biased 
estimates and/or predictions of the median AUC under treatment. Furthermore, this work illustrates that 
model averaging may be useful in the context of viral dynamic models to take into account the fact that 
several candidate models can provide equally good fits to the data. 
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Introduction: Chemoprotective drugs are developed to protect people from being infected by plasmodium, 
and in particular by P. falciparum, the most prevalent and deadly malaria strain in Africa. MMV’s stretched 
goal is to develop a treatment able to protect people for one month after a single dose.  It is thus important 
to understand how a drug kills parasites not only in the blood stage, which causes symptoms, but also in 
the liver stage, where the infection starts whilst remaining asymptomatic. 

Whilst PKPD models have been developed to understand the blood-stage activity of antimalarial candidates 
to cure patients, little modelling has been proposed for liver-stage activity. What makes modelling liver-
stage challenging is that the liver-stage parasites, unlike blood-stage parasites, cannot be counted. 

Objective: Develop a PKPD model to describe the drug killing effect on both the liver and blood-stage 
parasites. The example of DSM265, a plasmodial dihydroorotate dehydrogenase (DHODH) inhibitor, is 
chosen to illustrate the approach. 

Methods: A mathematical model was developed and consists of two ordinary differential equations which 
describes the dynamic of the liver and blood-stage parasites, respectively. Each equation includes a net 
growth rate and a drug killing rate specific to each stage. One term accounted for the release of the 
parasites from liver to blood-stage. Since liver-stage parasitemia cannot be monitored, the activity on liver-
stage had to be deconvoluted from the knowledge of the blood-stage activity. Therefore, the estimation of 
the PKPD parameters was conducted in four steps; (i) parasite growth in the blood, (ii) parasite growth in 
the liver, (iii) drug activity in the blood and (iv) drug activity in the liver. 

Two studies in which volunteers were injected infected red blood cells then administered DSM265 at 
150mg and 400mg, respectively,  were used to determine (iii) [1]. Then two studies, in which volunteers 
were administered a dose of 400 mg DSM265 administered 1, 3 or 7 days prior to infecting them with an 
i.v.  injection of 3200 sporozoites or 5 mosquito bites, were used to deduce (i), (ii) and (iv) [2]. In these 
studies, the parasites invade first the liver, then the red blood cells. In all four Volunteer Infected Studies 
(VIS), PK concentrations and blood-stage parasitemia were measured in each individual. 

All parameter estimations were conducted with Monolix (v2018R2), an NLME modelling software. When 
the number of subjects was limited, some of the inter-individual variability parameters were fixed. First, the 
blood-stage parameters were estimated with the blood-stage VIS data; then they were fixed, and the liver-
stage parameters were estimated with the liver-stage VIS data. 

Finally, a sensitivity analysis was conducted to identify which parameters are key in protecting people with 
DSM265. Moreover, to validate the model, simulations of the liver-stage VIS were conducted to compare 
the predicted fraction of subjects with breakthrough with the observations. 
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Results: The growth of the parasite in blood was better described by a cyclic model, with a growth rate 
estimated at 0.064 hr-1 and a period at 44.9 hours. For the liver-stage parasites, the growth rate was 
calculated to be 0.063 hr-1 and the fraction of viable sporozoites estimated to be 0.2% corresponding to 6 
sporozoites invading hepatocytes. In comparison, it was estimated that about 35% of the 50-100 
sporozoites injected after a mosquito bite reached the blood stream and could potentially invade 
hepatocytes [3]. The blood-activity analysis led to the estimation of a Minimum Inhibiting Concentration 
(MIC) of 1180ng/mL against blood infection, whereas the liver-activity analysis led to a MIC against liver 
infection of 2440ng/mL. The sensitivity analysis showed that the chemo- protectiveness of DSM265 is 
sensible to its liver-activity, and to a lesser extent to its blood-activity. Finally, the simulations showed that 
the chemoprotection PKPD model could reproduce the liver-stage VIS results, despite the limited number 
of volunteers. 

Conclusion: In conclusion, combining liver and blood-stage VIS made it possible to develop a promising 
PKPD model that can describe the activity of an antimalarial drug on both liver and blood-stages. 
Nevertheless, further analyses and more studies are needed to validate the model. Hopefully, this will help 
select better dosing regimen for chemoprotection to be tested in phase II studies. 
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Background: Just over 150 years ago, the Norwegian mathematician Cato Guldberg and the chemist Peter 
Waage, propounded the law of mass action [1]. A.V.Hill was the first to apply this mathematic principle to 
physiology [2]. In his studies on nicotine and curari, on the basis of the law of mass action and mass 
balance, he derived what was later known as “Emax model”. In pharmacological nomenclature, it is 
conventionally written as: E = Emax*A/(KA+A), where A is the concentration of a ligand and KA the 
equilibrium binding of the agonist. The Emax model is probably the most widely used model to describe 
drug-receptor interactions whether at the level of binding or a bioassay of a response variable. By linking 
pharmacokinetics (PK) to pharmacodynamics (PD), the Emax model (now driven by the concentration-time 
profile) provides a practical tool to describe concentration-effect relationship [3]. However, Emax model is 
so ingrained in PD modelling that the assumptions attached to it are often overlooked. This may cause 
difficulties in the interpretation of estimated parameters and extrapolation of the findings across different 
contexts (e.g., cell, tissue, animal and human). Hence, it is useful to have a framework that underpins our 
understanding and use of the Emax model. 
 
Objectives: The overall goal of this work is to develop a cohesive model framework for the Emax model 
that allows generalisation of its application to meet a diverse range of experimental conditions. This 
encompasses three specific objectives:  
(1) to systematically assess the assumptions underpinning the Emax model,  
(2) to relax these assumptions to accommodate different experimental conditions and physiological 
behaviours of systems, 
(3) to develop a user-friendly interface of the framework for scientific communication. 
 
Methods: The assumptions underpinning the Emax model were identified based on an evaluation of its 
historical origins, subsequent mathematic derivations, expert opinion, and logical reasoning. PubMed, 
Scopus and Google Scholar were searched for the features of receptor pharmacology that were not in line 
with the assumptions of the Emax model. Subsequently, the publications that cited these papers were 
screened to identify necessary model components for describing these features. At the end, by assembling 
all the necessary model components together the Emax model was generalised into a cohesive model 
framework of receptor pharmacology. In addition, a Shiny website was developed for interactive 
presentation of the cohesive model framework. 
 
Results: Seven assumptions underpinning the Emax model were identified: 
Assumption 0: The ligand-receptor interaction follows the law of mass action. 
Assumption 1: There is linear relationship between receptor occupancy and response. 
Assumption 2: There is no ligand-independent receptor activity. 
Assumption 3: One receptor only produces one type of response. 
Assumption 4: The total amount of receptor is constant. 
Assumption 5: The binding of ligand to receptor is at equilibrium. 
Assumption 6: There is an excess of ligand. 
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Assumption 0: The law of mass action ensures that the reaction rate depends on the concentrations of the 
reactants or products and the stoichiometry, forming the foundation of drug action. This assumption seems 
to be valid for most cases. 
 
Assumption 1: The Emax model cannot explain the phenomenon of receptor reserve (i.e., the ability of a 
ligand to elicit a maximal response with only a fraction of the whole receptor population occupied) [4], 
indicating a possible nonlinear relationship between receptor occupancy and response. Relaxation of 
Assumption 1 leads to the development of the operational model [5]. The operational model incorporates 
an arbitrary transduction function to transform receptor occupancy into response. Most of the time, it 
would be the rectangular hyperbolic function. 
 
Assumption 2: The Emax model cannot explain the phenomenon of constitutive activity (i.e., ligand-
independent receptor activity) or inverse agonist [6]. Relaxation of Assumption 2 leads to the two-state 
model [7]. In the two-state model, receptor could spontaneously form the active state and there exists 
dynamic equilibrium between active state and resting state even without any ligand present. In addition, 
the ligand could alter the equilibrium between resting state and active state. Note an empirical 
generalisation often includes a baseline effect as an approximation to the two-state model. 
 
Assumption 3: The Emax model cannot explain the phenomenon of biased agonism (i.e., a ligand can act on 
one receptor to differentially regulate multiple signalling pathways) [8]. Relaxation of Assumption 3 leads 
to the three-state model (i.e., the simplest version of multi-state model) [9]. In three-state model, receptor 
has two mutually competing active states and therefore can have two distinct signalling profiles. 
 
Assumptions 4-6: These Assumptions are related to the equilibrium conditions of the Emax model. The loss 
of surface receptor overtime has been observed in some receptors (e.g., cannabinoid 1 receptor and mu-
Opioid receptor), suggesting the need to relax Assumption 4 and consider receptor turnover and 
internalisation [10,11]. The validity of Assumption 5 is largely depended on the relative magnitude between 
the drug-target residence time and the observation period. Because of the potential advantages on 
duration of pharmacological effect, there is an increasing interest in lead optimisation of long residence 
time [12]. The Emax model is not applicable for these ligands and ligand binding kinetic is warranted. As a 
pharmacometrician, we are more aware of the violation of Assumption 6. Due to ADME processes, the 
relative magnitude between the amount of receptor and the amount of ligand changes over time. Hence, a 
PK model of ligand is incorporated in most of modelling work. The relaxation of Assumptions 4-6 leads to 
target-mediated drug disposition model [13]. This model consists of receptor turnover, ligand binding 
kinetic, ligand-mediated receptor internalisation and ligand PK. 
 
Generalising Assumptions 1-6 and integrating all the necessary model components provide a cohesive 
model framework of receptor pharmacology. Subsequently, a Shiny website was implemented for 
interactive presentation of this cohesive model framework (https://xiaozhu.shinyapps.io/GPCRmodel). 
 
Conclusion: A single framework of receptor pharmacology is proposed as a series of generalisations of the 
standard Emax model which can accommodate different experimental conditions and physiological 
behaviours of systems. This framework allows modellers to examine their current use of the Emax model 
and facilitates the interpretation of modelling results. The next step of this work is to assess the 
identifiability of different sub-models from the cohesive model framework based on available input output 
data. 
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Introduction: As pharmacometricians, we sometimes jump into complex modeling before thoroughly 
exploring our data. This can happen due to tight timelines, lack of ready-to-use graphic tools or enthusiasm 
for complex models. Exploratory plots can help to uncover useful insights in the data and identify aspects to 
be explored further through modeling or in future studies. Exploratory plots can even quickly answer 
questions without the need of a complex model, improving our efficiency and providing timely impact on 
project strategy. The Exploratory Graphics (xGx) tool is an open-source R-based tool, freely available on 
GitHub [1]. Intuitively organized by datatype and driven by analysis questions, the tool aims to encourage a 
question-based approach to data exploration focusing on the key questions relevant to dose-exposure-
response analyses. 

Objectives: 

• Facilitate the purposeful exploration of PKPD data 
• Encourage a question-based approach to data exploration, focusing on dose-exposure-response 

relationships  
• Provide a teaching tool for people new to PKPD analysis 

Methods: PK (single and multiple ascending dose), and PD (continuous, time-to-event, categorical, count, 
and ordinal) data were simulated and formatted according to a typical PKPD modeling dataset format. Lists 
of key questions relevant to dose-exposure-response exploration were compiled, and exploratory plots 
were generated to answer each question. The graphs were created following good graphics principles to 
ensure quality and consistency in our graphical communications [2].  

Results: Examples of the key analysis questions include: 

• Provide an overview of the data: 
o What type of data is it (e.g. continuous, binary, categorical)? 
o How many doses? 
o What is the range of doses explored? 
o For PK data, how many potential compartments are observed? 
o Is the exposure dose-proportional? 
o Is there evidence of nonlinearity in clearance? 

• Assess the variability: 
o How large is the between subject variability compared to between dose separation? 
o Can any of the between subject variability be attributed to any covariates? 
o Are there any patterns in the within subject variability (e.g. circadian rhythms, seasonal 

effects, food effects, underlying disease progression)? 
• Assess the dose/exposure-response relationship: 

o Is there evidence of a correlation between dose/exposure and response? 
o Is the relationship positive or negative? 
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o Is there a plateau or maximal effect in the observed dose/exposure range? 
o Is there evidence of a delay between exposure and response? 

For each datatype in the simulated dataset, plots were generated to answer these key questions. The plots 
along with the codes to produce them were compiled into a user friendly interface. The tool is intuitively 
organized by datatype and driven by the analysis questions. Since the graphs were generated based on a 
typical modeling dataset format and hosted online, they can be easily accessed and applied to new 
projects. 

Conclusion: Exploratory plots were generated, built around typical key questions particularly relevant to 
dose-exposure-response exploration and compiled into a user friendly interface. The Exploratory Graphics 
(xGx) tool can help underscore the role of purposeful data exploration for quantitative scientists. Through a 
question-based approach, xGx helps uncover useful insights that can be revealed without complex 
modeling and identify aspects of the data that may be explored further. 
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Objectives: 

Joint models are increasingly used in clinical trials. An important part of model building is to properly assess 
the descriptive and predictive ability of these models. Normalised prediction discrepancies (npd) and 
normalised prediction distribution errors (npde) have been developed to evaluate graphically and 
statistically non-linear mixed effect models for continuous responses [1]. In the present work, we extend 
npd to time-to-event (TTE) models [2]. 

The aims of this work were to: 

• develop npd for TTE data and evaluate their performance on a simulated example 
• evaluate the performance of the combined test for joint longitudinal and TTE models 

Methods: 

Let V denote a dataset. In this work we first consider a dataset with only TTE observations and then a 
dataset with both longitudinal and TTE observations. The null hypothesis H0 is that observations in V can be 
described by a model. Prediction discrepancies (pd) are defined as the quantile of the observation within its 
predictive distribution. In nonlinear mixed effect models (NLME), the predictive distribution is 
approximated by Monte-Carlo simulations (MCs).  The pd for unobserved (censored) event times are 
imputed in a uniform distribution based on the model prediction of the probability of censoring [2], using a 
similar method as the one developed to handle data under the lower quantification limit (LOQ) [3]. 
[1]  Under H0, the pd follow a uniform U(0,1). They can be transformed back to a normal N(0,1) distribution 
using the inverse normal cumulative function, and we test their distribution either through a Kolmogorov-
Smirnov test or a combined test of normality, mean and variance [1]. 

In joint models, we compute separately the pd for TTE data and the prediction distribution error (pde) for 
the longitudinal data, which are obtained after decorrelating simulated and observed data [1].  We then 
propose to use a combined test, combining the p-values of the tests on longitudinal data and on TTE data, 
adjusted with a Bonferroni correction. 

We evaluated the performance of npd/npde through two simulation studies inspired by [4]. Desmée et al. 
characterised the relationship between the prostate specific antigen biomarker (PSA) and survival in 500 
prostate cancer patients via joint modelling. We simulated event times and PSA trajectories from the joint 
model, for different sample sizes (50, 100, and 200) and evaluated the type I error and power of npd/npde 
to detect different types of model misspecifications. In the first simulation study, we assumed that the PSA 
model is correct and consider only TTE data. We tested two types of misspecification on the TTE model: 
PSA impact on survival and on the baseline hazard model. In the second simulation study, we considered 
both longitudinal and TTE data. We assumed that the TTE model was correct and tested misspecifications 
on PSA model’s parameters. 
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Results: 

In the first simulation study and in both cases of deviations for the TTE component, we found that the type 
I error associated with the npd-TTE was close to the expected 5% for all sample sizes. They were able to 
detect a model and parameter misspecification. In both cases of deviations, censoring the TTE data led to a 
decrease of the power. This is expected because in that case pd are imputed under the model being tested. 

In the second simulation study, the npde-PSA were able to detect misspecifications in the PSA model, with 
a type I error close to 5%. A misspecification on an influential parameter of the PSA model was captured by 
both npde-PSA and npd-TTE. This suggests that, if a test rejects the survival model, we have to look at 
whether the problem may not come from the longitudinal model. 

For all types of misspecifications, the type I error of the combined test was found to be close to the 
expected 5%. The power of the combined test to detect model misspecifications increased with the 
difference from the true model and as expected, with sample size. Graphically the power increase can be 
related to larger differences in the shape of the survival function or PSA evolution. 

Conclusions: npd can be readily extended for event data by imputing the pd for censored event under the 
model [1]. The combined test for multiple responses performed well with an adequate type I error, and was 
quite sensitive to alternative models tested. 

Acknowledgments: The authors thank Karl Brendel for his valuable contribution to this work 
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Objectives Tamoxifen is an anti-estrogenic drug that has been used to treat estrogen receptor (ER)-positive 
breast cancer for decades. Five years of adjuvant treatment with tamoxifen lowers ER-positive breast 
cancer recurrence and mortality rates.1 Despite the proven established efficacy of tamoxifen, 25-30% of 
patients still experience recurrence within 10 years. Variability in response has been attributed to variability 
in pharmacokinetics (PK), more specifically to variability of endoxifen concentrations, the most important 
active metabolite of tamoxifen. Dose adjustments based on Therapeutic Drug Monitoring (TDM) of 
endoxifen as a strategy to improve survival in patients with ER-positive breast cancer are controversial, 
because the exposure-response relationship has not been well quantified. Additionally, the benefits of TDM 
have not been shown prospectively. Appropriately designed clinical trials are necessary to demonstrate the 
potential benefits of TDM. Therefore, clinical trial simulations using a parametric modelling approach based 
on large patient cohorts were performed. An observational design was simulated aiming to demonstrate an 
exposure-response relationship between endoxifen concentrations and breast cancer recurrence. 
Additionally, randomized controlled trials (RCTs) were simulated to support a design (including, power 
calculations, sampling size and follow-up time) evaluating the benefits of TDM over conventional dosing. 
These clinical trial simulations can help design appropriate trials and assess the validity of observational 
trials, in order to put previously conducted retrospective and prospective observational studies into the 
right perspective.2,3 

Methods Data Recurrence free survival data and endoxifen concentrations were available from 1370 ER-
positive breast cancer patients who participated in a previously conducted trial.2 These data were used to 
establish a parametric time-to-event model. In addition, TDM data of endoxifen from 658 breast cancer 
patients treated with tamoxifen in the adjuvant setting were available from the Netherlands Cancer 
Institute. These data were used to evaluate the effect of a TDM-based dose increment of tamoxifen from 
20 mg/day to 40 mg/day on attainment of the steady state target concentration of 5.97 ng/mL. Proportions 
of patient below and above this target were used for the clinical trial simulations. 

Time-to-event model Different time-to-event models (Gompertz, Weibull and exponential distribution 
hazard functions) were evaluated in NONMEM using the Laplacian estimation method. Tumor grade, tumor 
stage, menopausal status were evaluated as predictors of recurrence-free survival. 

Simulations The patients to be included in the clinical trials were ER-positive breast cancer patients that 
initiate treatment with tamoxifen 20 mg/day. Tumor grade, stage and menopausal status proportions were 
sampled from a previously studied cohort.2 Firstly, simulations were conducted to evaluate the optimal 
design of an observational trial to evaluate the exposure-response relationship between endoxifen 
concentrations and breast cancer recurrence. Endoxifen concentrations were determined, though no dose 
adjustments were applied and only follow up was performed. Recurrence was compared between patients 
attaining and not attaining the endoxifen target concentration. Secondly, simulations were conducted to 
evaluate the optimal design of a RCT to determine the benefits of endoxifen TDM on breast cancer 
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outcome. Two different RCT designs were evaluated. Design 1: patients initiating treatment with tamoxifen 
20 mg/day were included and randomized (1:1) to either the control arm, where no TDM was applied and 
only follow up was performed, or to the intervention arm in which patients with endoxifen concentrations 
≤5.97 received a dose increment to tamoxifen 40 mg/day. Design 2: endoxifen concentrations are 
determined and patients with low endoxifen concentrations are randomized (1:1) or (1:2) either to the 
control arm (no dose increment) or to the intervention arm, receiving a dose increment to 40 mg/day 
tamoxifen. 

Power calculations Each design was simulated a 1000 times with varying numbers of patients. For each trial 
the hazard ratio between the intervention and the control arm was determined using a Cox proportional 
hazards model (mimicking the conventional practice of analysing clinical trial survival data). The Cox 
proportional hazards model accounted for different covariates. The power was determined by the 
percentage of trials with a significant difference in recurrence-free survival between the control and the 
intervention arm, with a p < 0.05. A sensitivity analysis was performed to investigate the effect of shorter 
follow up times. In addition, the uncertainty in the effect of the PK target on the hazard was evaluated by 
assuming a factor 2 increase or decrease of this effect on the hazard. 

Results Parametric time-to-event model The baseline hazard was best described by a Weibull distribution 
model. A higher tumor grade or stage was associated with an increased risk of recurrence. In addition, 
postmenopausal patients had a decreased risk of recurrence compared to premenopausal patients. A 
random dropout was used to account for patients that were lost to follow up. 

Simulations To demonstrate the exposure-response relationship with a power >0.8, an observational trial 
design including at least 1500 patients and an intended follow-up of 15 years is needed to find a hazard 
ratio of 0.71, assuming a 29% reduction in the hazard of recurrence for patients attaining the target >5.97 
ng/ml endoxifen concentration compared to patients with lower endoxifen concentrations. In order to 
prospectively validate application of endoxifen TDM to improve breast cancer outcome (assuming the 
previously estimated HR of 0.71), using the second study design demonstrated to be most feasible. Design 
2 needs 1600 patients per arm to demonstrate the same effect (power of 82.9%). For design 2, a three-fold 
more patients are needed to identify the 32.5% of patients with low endoxifen concentrations. In 
comparison to previously conducted trials, the retrospective analysis by Madlensky et al. had around 60% 
power to find an exposure-response relationship and the recently published prospective CYPTAM study had 
only around 30% power.2,3 

Conclusions Currently, no prospective or retrospective trial with sufficient power and follow up has been 
performed to detect the proposed exposure-response relationship between endoxifen and breast cancer 
recurrence. Our clinical trial simulations and power calculations indicate that an observational or 
randomized trial in which only the patients with low endoxifen steady-state plasma concentrations are 
randomized could both be feasible, although the required sample size would require a multicenter trial and 
international collaboration. If such a trial would be initiated, follow-up of 15 years is necessary. 
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Context: 

Immune-oncology is revolutionizing cancer treatment, but the association between treatment response 
and survival remains poorly understood. The response kinetics, as guided by the longitudinal evolution of a 
biomarker (e.g. the tumor size), can help detect treatment relapse and identify patients most-at-risk of 
death or progression. In order to model these two responses, specific approaches, called “joint modelling”, 
are needed that acknowledge the correlation between response to treatment and survival [1]. In these 
joint models, the hazard rate is modeled by a parametric survival model that directly depends on the 
biomarker kinetics. Further, the biomarker kinetics, which may be a nonlinear process, is modeled using a 
nonlinear mixed-effects model [2]. Parameters estimation in nonlinear joint models are complex, as the 
likelihood does not have an analytical form. It requires specific algorithms such as the Stochastic 
Approximation Expectation Maximization algorithm [3,4]. Joint modeling of tumor size dynamics and 
overall survival has so far not been used to improve early detection of patients most-at-risk of death or 
progression that could benefit from alternative therapies. 

Objectives: 

To quantitatively evaluate the association between tumor size kinetics, baseline covariates and overall 
survival in metastatic urothelial carcinoma patients following atezolizumab immunotherapy treatment, 
using a nonlinear joint model. 

To use this model to characterize “in real time” new patient’s profile of response, thus assessing its 
predictive ability for the early detection of patients at risk of death. 

Methods: 

A phase 2 clinical trial of 309 advanced urothelial carcinoma patients treated with atezolizumab (IMvigor 
210) [5] was used to build a joint model for tumor size kinetics and survival. Then the model was validated 
externally using a phase 3 clinical trial data from 457 patients in the same indication (IMvigor 211) [6]. 
Model predictions were assessed using time-dependent Area Under the ROC Curve (AUC) and Brier score to 
evaluate discrimination and calibration, using different follow-up times (called ”landmark”) and time of 
prediction (called ”horizon”) [7]. 

Results: 
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The best description of tumor size kinetics was obtained using a biphasic exponential model accounting for 
differential kinetics in tumor-sensitive and tumor-resistant cells, while overall survival was described using 
a parametric Weibull model. Using these models, we identified time-to-tumor growth and instantaneous 
changes in tumor size as the best on-treatment predictors of survival, showing that tumor size kinetics is an 
independent predictor of survival. As expected, model parameters were highly dependent on patient’s 
disease severity, in particular presence of liver metastasis, hemoglobin and alkaline phosphatase levels, 
ECOG performance status, or neutrophil-to-lymphocyte ratio. 

Using the joint model for prediction on an external validation dataset, we found that the model reproduced 
the overall survival (OS) observed. Further, using various landmarks and horizons, we found AUC values 
comprised between 0.73 and 0.84, i.e. significantly higher than the ones obtained with an approach where 
OS is modeled ignoring tumor dynamic (“No link”: between 0.55 and 0.76). The Brier scores, summarizing 
the predictive performance of the joint model, showed more than 15% improvement with the best joint 
model compared to the model with no link between tumor kinetics and OS, for horizon times greater than 
6 months. 

Conclusions: 

We showed that including on-treatment tumor dynamic data in a relevant statistical framework improves 
the prediction of survival probability during immunotherapy treatment. In addition, the proposed model 
could be used to identify patients most-at-risk of death, in real time, hence giving the opportunity to 
optimize patients’ medical treatment. 

References:  
[1] D. Rizopoulos, Joint models for longitudinal and time-to-event data: With applications in R, 2012.  
[2] M. Lavielle, Mixed effects models for the population approach: models, tasks, methods and tools, 2014.  
[3] E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models, 2005.  
[4] C. Mbogning et al., Joint modelling of longitudinal and repeated time-to-event data using nonlinear 
mixed-effects models and the stochastic approximation expectation–maximization algorithm, J Stat 
Comput Simul., 2015.  
[5] E. Rosenberg et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma 
who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, 
phase 2 trial, The Lancet, 2016.  
[6] T. Powles et al., Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced 
or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled 
trial, The Lancet, 2018.  
[7] P. Blanche et al., Quantifying and comparing dynamic predictive accuracy of joint models for 
longitudinal marker and time-to-event in presence of censoring and competing risks, Biometrics, 2015. 



 

Page | 61  

  

Oral: Drug/Disease modelling | Friday 10:20-10:20 

 

D-03: Jiajie Yu A new approach to predict PFS in Ovarian Cancer based on tumor 
growth dynamics. 

Jiajie Yu (1) Nina Wang (1) Matts Kagedal (1) 
(1) Department of Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, 

USA. 

Objectives: 

Progression free survival (PFS) is a surrogate efficacy endpoint that is being used for regulatory approval of 
investigational drugs in ovarian cancer [1]. The PFS has also been shown to be predictive of the overall 
survival [1], hence being able to predict PFS for new treatments can be of great value. The PFS is usually 
analyzed by survival analysis methodology and PFS time is based on events such as target lesion related 
disease progression and non-target related disease progression whichever occurs first. PFS could be linked 
to tumor growth dynamics by linking the PFS hazard to target lesion tumor size, similarly to what is 
commonly done for overall survival [2]. With this approach target lesion tumor size data is included twice in 
the analysis, first as observations informing the model of tumor growth dynamics (TGD) and second 
influencing the PFS hazard in the time to event analysis. Based on such model it is possible to simulate 
unrealistic outcomes with a tumor size profile that meets the definition of target lesion disease 
progression, but without any PFS event occurring.  

The aim of this work was to develop an approach for prediction of PFS that avoids duplicate use of target 
lesion data. A joint modelling approach including two sub-models is proposed: 1. Model for target lesion 
tumor growth dynamics.  2. Time-to-event model for non-target related progression. These sub-models 
combined can be used to predict PFS. 

Methods: 

A joint TGD-survival model was developed using NONMEM 7.4. The model contained three components to 
predict PFS. First, the TGD was modeled based on the method developed by Claret et al. [2] where the drug 
effect was introduced on the tumor size shrinkage parameter (ks). Potency difference between compounds 
were accounted for. The M3 method was applied to handle the censoring of tumor data when tumor size 
was below the limit of quantification per RECIST guideline [3]. The TGD was used to determine target lesion 
disease progression which was defined as more than 20% increase in target lesion tumor size from 
minimum observed value. Second, the hazard for non-target related disease progression was linked to the 
individually predicted, time varying target lesion tumor size. Third, a drop-out model was introduced to 
account for patient discontinuation from the study. Observed Kaplan-Meier curves for PFS were compared 
to simulated predictions where progression was based on either target lesion progression or non-target 
related disease progression, whichever occurs first in each patient. The model was developed using a 
pooled dataset including phase I and II data from platinum resistant ovarian cancer patients. Treatments 
included Anti-MUC16 ADC, Anti-MUC16 TDC, Anti-NaPi2b ADC and Doxorubicin. 

Results: 

The model could describe the observed dose response well for different compounds, both in terms of 
target lesion tumor size over time and in terms of PFS. The first derivative of target lesion tumor with 
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respect to time correlated with the risk for non-target progression and the drug effect on the risk for non-
target progression could be predicted based on target lesion tumor size alone. 

Conclusion: 

A joint model simultaneously estimating TGD based on target lesion tumor size and the risk for non-target 
related progression was developed. The model could describe the PFS influenced by different drug 
treatment and may provide a more robust prediction of PFS based on TGD for new treatments in future 
ovarian cancer clinical trials. 
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Objectives: 

Physiological changes during pregnancy might have an influence on pharmacokinetics (PK) and hence on 
the efficacy and toxicity of pharmacological treatment. Recently, it was shown that oncological treatment 
during pregnancy is safe and recommended.[1] Given the severity of the disease but at the same time high 
potential impact on both the mother and child, there is a high unmet medical need for adequate and 
tolerable treatment of this neglected patient population. In order to make adequate dose adjustments, it is 
important to assess the PK of cytotoxic drugs in pregnant patients. With this work we aimed to develop a 
methodology enabling the simulation of individual PK profiles of a range of cytotoxic drugs in pregnant 
patients and subsequently predict adequate and safe dosing regimens. 

Methods: 

A selection of relevant empirical equations for physiological changes from Abduljalil et al. were 
implemented in our semi-physiological simulation framework.[2] Firstly, the change in unbound drug 
concentration as a function of estimated gestational age (EGA) was implemented, using the change in 
albumin or alpha-1-glycoprotein levels. Since the proportion renally cleared drug for all four studied drugs 
is eliminated by glomerular filtration (GFR), the change in renal clearance was scaled using the change in 
GFR during pregnancy. To describe the change in hepatic clearance, a well-stirred liver model was used, in 
which intrinsic clearance was adjusted for gestational changes in enzyme activity. Reported non-pregnant 
volumes of distribution were scaled with a previously proposed algorithm using the gestational change in 
total body water, extracellular water and plasma volume.[3] 

Non-linear mixed effects population models that described the PK of doxorubicin, epirubicin, docetaxel and 
paclitaxel in non-pregnant patients were obtained from literature.[4,5,6,7] These models were integrated 
with the semi-physiological alterations and drug specific characteristics. Individual concentration-time 
profiles were simulated in R (R package deSolve) and simulations were visually evaluated using PK data 
from 26, 16, 9 and 19 pregnant patients that were available for doxorubicin, epirubicin, docetaxel and 
paclitaxel, respectively.[1,8] Individual model fits were obtained for the observed data, by using the 
MAXEVAL=0 and POSTHOC options in NONMEM (v7.3).[9] The fit of the semi-physiological model was 
compared for the fit of the model parameters for the non-pregnant versus the pregnant state. 
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Results: 

Typical parameters for an EGA of 28 weeks were predicted. A typical increase of 15.8%, 14.6% and 29.0% 
was observed for doxorubicin CL, V1 and V2, respectively and 14.2%, 14.5%, 13.7% and 39.0%, for 
epirubicin. For docetaxel, typical increases were predicted of 18.1%, 18.0%, 20.5% and 38.7% for CL, V1, V2 
and V3, respectively. For paclitaxel, an empirical PK model including saturable distribution to the first 
peripheral compartment and saturable elimination was used. A typical increase of 19.8%, 15.0% and 38.4% 
for the maximal elimination rate, V1 and V3 was observed. The simulations showed an adequate prediction 
of the observed pregnant PK for all four drugs at therapeutic doses. Also, the simulations clearly 
demonstrated that the use of non-pregnant parameter estimates resulted in an overprediction of the 
observed concentrations for all four drugs. Comparison of the model fit for the individual predictions based 
on the semi-physiological pregnant parameter estimates versus non-pregnant parameter estimates showed 
a significantly improved fit for paclitaxel (ΔOFV –18.0, P=0.0004, χ2-distribution, degrees of freedom (df)=3), 
epirubicin (ΔOFV –148, P<0.00001, χ2-distribution, df=4) and doxorubicin (ΔOFV –62.2, P<0.00001, χ2-
distribution, df=3). For docetaxel, a decrease in OFV of 4.66 points (P=0.324, χ2-distribution, df=4) was 
observed. 

Conclusions: 

The semi-physiological framework provided an adequate prediction of the PK for four cytotoxic agents of 
two distinct drug classes in women over varying stages of gestation. This method may therefore be used for 
extrapolation purposes to adjust anticancer dosing regimens in pregnant women for drugs for which PK 
data from pregnant women are unavailable. 
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Introduction: Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy, characterized by 
an accumulation of leukemic blast cells in the bone marrow and is often accompanied by anemia, 
thrombocytopenia and neutropenia [1]. Treatment of AML patients aims to eliminate leukemic blasts and 
hence revert their bone marrow function.  In the development of novel therapies for AML, a significant 
challenge is balancing efficacy with safety: a recent example being the discontinuation of vadastuximab 
talirine (VT) development due to increased hematologic toxicity and fatal infections [2,3], despite efficacy in 
blast reduction. The dual effects of therapeutic agents on both the blast reduction as well as hematologic 
toxicity requires a systems-level description of their interactions. 

Objectives: We show how clinical development questions for AML therapies can be addressed by utilizing a 
quantitative systems pharmacology (QSP) model that describes the life-cycle of leukemic blasts in bone 
marrow and peripheral blood, as well as disease-induced cytopenia. 

Methods: Firstly, a model of normal hematopoiesis across the three lineages (neutrophils, platelets and red 
blood cells) including regulation mechanisms (EPO, TPO and GCSF) was built and calibrated based on 
published data sets (e.g., [4,5]). Secondly, the proliferation rate of AML blasts in the bone marrow and their 
transit time into the blood compartment are informed by published tracer kinetic studies (e.g., 
[6,7]).  Finally, the model mechanisms by which leukemic blasts result in cytopenia were informed by key 
experimental publications [8,9] based upon clinical and preclinical data of AML. Therapies are modelled by 
adding killing effects on both the leukemic blasts and normal progenitor cells. In particular, to predict the 
hematologic toxicity of a given drug candidate, a novel multilineage hematopoiesis assay is used to 
generate treatment data across progenitors and mature cells along the three lineages (neutrophils, 
platelets and red-blood cells). A model of the in-vitro assay is used to estimate and translate toxicity 
parameters in-vivo [10].  We evaluated the platform model using VT as a test example, using Emax 
expressions for drug effects. 

Results:  The QSP model recapitulates aspects of the AML disease, as well as demonstrates the reversal of 
cytopenias after the removal of leukemic blasts from the bone marrow.   We show that the published 
neutrophil and platelet recovery times under VT monotherapy [2] are in good consistency with the QSP 
model, which takes as inputs the estimated efficacy parameters based on data in [2] and hematologic 
toxicity parameters estimated from in-vitro model [10]. We simulate the model for both the single dose as 
well as fractionated dosing (days 0 and 3) scenarios, and explain the reported clinical outcomes.  The model 
findings suggest that in AML patients the dosing paradigm for an improved neutrophil recovery time may 
differ from that applicable to solid tumor patients. In the latter, patient baseline blood cell counts are close 
to normal and dose fractionation is an established approach to avoid blood count nadirs falling below the 
thresholds corresponding to grades-3/4 hematological AEs. In contrast, blood counts in AML patients prior 
to receiving treatment are already very low, and the aim of therapies is to remove leukemic blasts 
sufficiently quickly so that their suppressive effects on normal hematopoiesis can be removed, while not 
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causing undue hematologic toxicity. Model simulations shed light on the important role of efficacy on the 
time to count recovery.  

Conclusion: AML is a disease where clinical response criteria entail not only leukemic blast elimination but 
also the recovery of normal blood counts. We demonstrate that the use of a QSP model which integrates 
both the efficacy and safety aspects generates valuable insights for optimizing the dosing schedule of AML 
therapies. 
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