Population pharmacokinetics of the new antiepileptic drug Brivaracetam

Z. Hussein*, PhD, B Lacroix, Pharm D** and ML Sargentini-Maier, PhD**

*Medeval Ltd, Manchester UK; **UCB SA, Braine L'Alleud B

INTRODUCTION

Brivaracetam (BRV) ((2S)-2-[(4R)-2-oxo-4-propylpyrrolidin-1-yl] butanamide) is a new drug under clinical development for the treatment of epilepsy and neuropathic pain. The aim of this analysis was to describe the population pharmacokinetic profile of BRV in healthy and epileptic adults, and to assess the effect of demographic covariates and concomitant use of AEDs.

METHODS

Study design

This was a retrospective population analysis based on 12 clinical studies conducted in young healthy, renally impaired, elderly volunteers and in epileptic patients populations.

Table 1. Description of studies included in the analysis

Study #	Study type and duration	Number of subjects and population ^(a)	Daily doses (mg)	Samples/ subject/period	AEDs (max) ^(b)
N01066	MTD, SD	27 HV	10-1400	12-14	-
N01075	Food interaction, SD	8 HV	150	14	-
N01068	Mass balance, SD	6 HV	150	19	-
N01067	MTD, MD (2w)	36 HV	200-800	32	-
N01080	OC DDI (3w)	24 HV	400	18	-
N01081	CBZ DDI (10 days)	14 HV	200-400	12	1
N01082	PHT DDI (10 days)	20 HV	400	3	1
N01079	POC 1, MD (3 days)	24 HV	400-800	11	-
N01118	Elderly subjects, MD (10 days)	15 EV	200-400	26	-
N01109	Renally impairment, SD	18 (9 SRI+9 HV)	200 15		-
N01069	POC 2, SD	19 EP	10-80	9-12	Any
N01133	CBZ DDI, MD (4w)	9 EP	100-400	5	1

(a) HV: voung healthy subjects; EV: elderly healthy subjects; SRI: subjects with severe renal impairment; EP: subjects (b) Maximum number of concomitant AEDs as specified in the protocol

Data analysis

- Database consisted of demographic information and concentration-time records from single and repeated oral b.i.d. administration studies (3 days to 4 weeks) in young and elderly healthy subjects, subjects with severe renal impairment, and epileptic patients.
- In total, 4277 plasma concentration measurements from 203 subjects were used.
- Population PK analysis was performed by non-linear mixed effects modeling using NONMEM Version V, with double precision and first order conditional estimation (FOCE).
- The structural model was a 1-compartment, open model with first order absorption and elimination rates (Subroutine ADVAN 2 TRANS2), using the parameters:
- KA: absorption rate constant
- CL/F: apparent total body clearance
- V/F: apparent volume of distribution
- Inter-individual variability (IIV) was modeled on each PK parameter
- Residual variability was modeled by a proportional error

Table 2. Demographic characteristics

Continuous Covariates (median [range])		Categorical Covariates (N)		
Weight (kg)	73 (44.2-124)	Males/Females	142/61	
Age (years)	28.4 (18.3-78.8)	Healthy/epileptic	175/28	
BSA (m²)	1.88 (1.37-2.43)	AEDs : none/neutral	165/4	
CLcr (mL/min)	104.1 (12.9-169.6)	AEDs: inducer	23	
		AEDs: inhibitor	11	

Population pharmacokinetics

- · Goodness of fit plots demonstrated the even distribution of predicted and observed values and the adequacy of the proportional model for residual variability (Figure 1).
- Covariates including CLcr, ethnicity, dose, duration of therapy and health status showed no significant effect on BRV pharmacokinetics.
- The influential covariates identified were age, weight, concomitant inducer AEDs and gender on CL/F; weight and gender on V/F; food intake on KA

Figure 1: Goodness of fit plots of the final model

- The final model was expressed as follows:
- KA $(h^{-1}) = 4.05$ (fasted intake) or 0.979 (intake with food) - CL/F (L/h) = [3.84 + 0.0345 * (WT-73) - 0.0146 * (AGE-28.4) -0.000856 * (AGE-28.4) * (WT-73)] * (1+AAEDC * 0.261) * (1 -0.182 * SEX)

(WT=weight in kg; AGE= age in years; AAEDC=1 for concomitant inducer AEDs and 0 for all other concomitant AEDs categories; SEX=0 for male and 1 for female subjects)

- V/F (L) = [40.1 + 0.345 * (WT-73)] * (1-0.128 * SEX) (WT= weight in kg; SEX=0 for male subjects and 1 for female subjects)

- The parameter estimates from the final PK model are listed in Table 3.
- Structural parameters of the population PK model (KA, CL/F, V/F) were estimated with good precision (<23% RSE); interindividual variability for CL/F (15 %) and V/F (9 %) was low (Table 3)
- The inter-subject variability in CL/F and V/F was reduced from 23% and 14% in the base model, to 15% and 9% respectively when all the statistically significant covariates were incorporated in the final model.

Table 3. PK parameter Estimates of the Final Model

Parameter	Estimate [95% CI]	Inter-Individual Variability %
KA fasting conditions, h ⁻¹ KA fed conditions, h ⁻¹	4.05 [2.24-5.86] 0.979 [0.756-1.20]	80.2
CL/F typical value, L/h • Weight factor • Age factor • Age/weight correlation factor • Inducer AEDs factor • Gender factor	3.84 [3.72-3.96] 0.0345 [0.0238-0.0452] -0.0146 [-0.0195 -0.00972] -0.000856 [-0.00122 - 0.000493] 0.261 [0.188-0.334] -0.182 [-0.239 - 0.125]	15.1
V/F typical value, L • Weight factor • Gender factor	40.1 [38.9-41.3] 0.345 [0.246-0.444] -0.128 [-0.1740.0817]	8.55
Residual variability (%CV)	25.9	

Figure 3. Post-hoc individual estimates of CL/F vs age, bodyweight, gender and concomitant inducer AEDs

Inducer AED No inducer AED

Figure 4. Post-hoc estimates of V/F vs bodyweight and gender

Males

Females

Clinical relevance of statistically significant covariates

• C_{max} , C_{min} and AUC_{T} were simulated for extreme covariate values, with a 75 mg twice daily regimen, and compared to the reference population (line 1, Table 4).

Table 4. Relative effect of extreme values of covariates on steady-state Cmax, Cmin and AUCT

Subjects (fed conditions) sex-weight-age-AEDs	C _{max} µg/mL	C _{min} µg/mL	AUC _τ µg∙h/mL	C _{max} ratio	C _{min} ratio	AUC_{τ} ratio
Male-70 kg-30 years-no inducer AED	3.15	1.09	21.05	-	-	-
Male-70 kg-25 years-no inducer AED	3.14	1.06	20.98	0.997	0.972	0.997
Male-70 kg-75 years-no inducer AED	3.59	1.35	24.52	1.14	1.24	1.16
Male-50 kg-30 years-no inducer AED	3.90	1.33	26.00	1.24	1.22	1.24
Male-100 kg-30 years-no inducer AED	2.49	0.86	16.61	0.790	0.789	0.789
Male-70 kg-30 years-with inducer AED	2.65	0.76	16.70	0.841	0.697	0.793
Male-70 kg-30 years-no inducer AED*	3.59	0.985	21.34	1.14	0.904	1.01
Female-70 kg-30 years-no inducer AED	3.80	1.38	25.73	1.21	1.27	1.22

*Fasted conditions

- Only weight, gender and concomitant inducer AEDs had a >20% effect on C_{max} and/or AUC_{T}
- In the range of 50-100 kg bodyweight, C_{max} and AUC_T fluctuated by 43% around the mean value

model

- Modeling was performed on log-transformed concentrations
- Investigated covariates :
- Food on KA
- Age, weight, BSA, gender, ethnicity, CLcr, concomitant AEDs, dose, duration of treatment, health status on CL/F
- Age, weight, BSA, gender, ethnicity, dose and duration of treatment on V/F
- Simulations in different subject sub-populations were undertaken to evaluate the clinical significance of covariates significantly affecting the PK parameters

RESULTS

Subjects

- Population demographic characteristics are summarized in Table 2.
- Subjects with epilepsy were chronically treated with 1-3 concomitant AEDs, classified as neutral, inducer or inhibitor

Effect of Covariates

- Post-hoc estimates of KA under fasted and fed conditions are shown in Figure 2
- Post-hoc estimates of CL/F versus age (males not under concomitant AEDs), bodyweight (males not under concomitant AEDs), gender and concomitant inducer AEDs are shown in Figure 3
- Post-hoc estimates of V/F versus bodyweight (male subjects) and gender are shown in Figure 4

Figure 2. Boxplot of post-hoc individual estimates of KA under fasted and fed conditions

- The limited effect of gender and concomitant inducer antiepileptic drugs (around 20%) are not considered as clinically significant, given the broad safety and tolerability profile of the compound.

CONCLUSIONS

- A large part of the inter-individual variability in brivaracetam pharmacokinetics was accounted for by differences in weight, gender, age and concomitant enzyme-inducing AEDs.
- Since the identified covariates had a modest influence on PK parameters, brivaracetam is deemed to have a highly predictable exposure in individual subjects. No dose adjustment is required.
- The current model can be used to predict exposure in target populations in phase 2/3 studies.