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ABSTRACT

BACKGROUND/AIMS: Indirect response models provide a semi-
mechanistic framework to address drug-induced temporal delays in
response-time profiles relative to drug exposure profiles. Currently,
this methodology is developed for continuous response data only.
No general theory exists for addressing drug-induced delay in
ordered categorical response data. An extension of the indirect
model methodology for ordered categorical data is proposed using
the concept of a latent variable.

METHODS: The approach is motivated by the statistical concept of
a latent variable — an underlying and unmeasurable continuous
process (such as inflammation or disease state), which is mapped
into the measurable ordered categorical data. The four indirect
response mechanisms are applied to this latent variable to derive a
set of indirect, latent variable response models (ILVRM).

RESULTS: Stochastic simulations were implemented to produce
expected (mean) longitudinal response profiles, which are presented
graphicaily for the four ILVRM as a function as a function of
exposure (or dose) and time. Ultimately, the ILVRM simulation
results characterize the drug-induced delay in effect, which can be
used to discriminate between potential model types (a priori) when
performing data analysis.

CONCLUSIONS: ILVRM methodology provides a natural
(pharmacologically interpretable) way to extend indirect response
mechanisms to ordered categorical data.

INTRODUCTION

Indirect response models (IRMs) provide a semi-mechanistic
framework for linking pharmacodynamic (PD) responses to plasma
coneentrations (PK) and are useful when the PD and PK are not in
equilibrium (the PD peaks or nadirs are not aligned temporally with
Cmax). IRMs are well characterized in the literature.!? In general,
IRMs can be represented as
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where k; is a zero-order production rate, k, is a first-order
elimination rate, «(r) and v(r) are stimulatory or inhibitory forcing
functions - ie,
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Eq. (2)

and R(r) is the model predicted response at time ¢. For continuous

PD data, the statistical model for IRMs can be represented
y=R()+e Eq.(3)

where y is the measured response and £ is the residual error. The

population parameters of Egs. (1)-(3) can be estimated using the

ELS objective function of NONMEM.?

Sometimes efficacy and often safety data* are measured as discrete,
ordered categorical responses. Familiar examples are pain/pain
relief, dizziness, and somnolence. Empirical models are often fit,
ignoring the underlying pharmacological processes when
formulating the functional forms of these generalized nonlinear
models (logistic type). Yer, the pharmacological processes that
underpin these responses, do not change just because the response
is discretelordered categorical (imprecise, quantal). The underlying

drug mechanism (ie., binding to receptors, modulating cascades of

events) is identical to that had the response data been continious.

Extension of IRMs to ordered categorical (OC) data is motivated
here by the concept of a latent variable to yield indirect latent
variable response models (ILVRM). An LV is an underlying,
unobservable variable, that maps into OC responses by the
probability mass between thresholds.#5 The concept can be likened
to PK concentrations (the LV) reported as either above or below a
quantification limit (the binary response). The framework in
Gibbons and Hedeker for (generalized) linear mixed effect LV
models is also extended to (generalized) nonlinear mixed effect LV
models.s

The Method section contains a more mathematical development of
the ILVRMs; the individual and marginal likelihoods for fitting the
models: and the details of the simulation used to calculate the model
predictions.  The Results section displays the results of the
simulation graphically. The Discussion section compares the
ILVRM to the familiar OC data model for pain relief developed by
Sheiner and Beal (and others). and is followed by a brief conclusion.

¥Here the satety responses are assumed to be from a single mechanism - not general
adverse events.

METHODS

Binary Responses (Probit Model)

The latent variable for ILVRM is defined here as
o = R, (explos,) Eq. (4)

where z;" is the continuous (unobservable) LV, Ri(r) is the model

prediction of LV respanse (Eq. (1)), o scales the residual variability, and

&; 1% (unobservable) error, £ ~ N(0,1), all for individual / at the tume /.

The dependence of z* on subject-specific random effects (i7's in

NONMEM) is suppressed for ease of exposition. The LV is assumed to

be lognormal distributed (see below). Using the closed form solution of

R,
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(w is the integration variable) and applying the log-transform to both
sides of Eq. (4) yields

Inz =37 =InR,(1)+ o8, =R, + I, (1)+ o8,

Eq.(6)

Let z be the observable binary response. Conceptually, z;= 1 when g;**
(or In z;" ) exceeds some threshold, . More precisely,

Pz =1)= Pz > ¥)= T fL(p[
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Eq.(7)
where @(¢) is the cumulative normal distribution. Note that g;;

y-InR, ~lnxy() 6 ~Ink,(0) Eq.(8)
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which indicates the estimates of R,,; and yare not unique (thus, ycan be
arbitrarily set to O without loss of generality). Note that unlike the
linear case where ois unidentifiable and set to 1, o can be estimated (In

Ki{#) is not modified by a parameter) and its inclusion is necessary for
correct estimates of k.

The mapping of the LV to the probability scale for fitting OC data can
be related pictorially

Latent Varinble Scale Probability Seale
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The marginal likelihood for individual / is constructed as

1 )= T} [@(-a, 1 1 - of-q, )} Eq. (9)

which assumes independent observations within a subject. Assuming
n~h(°) = N(0.L), the Laplace approximation can be used to approximate
the integral for the marginal likelihood,

L(z,)= [ 1(z.|n, Jn(n)dn Eq. (10)

facilitating estimation using NONMEM.3

Ordered Categorical Responses (Ordinal)
For K levels, there are K+1 thresholds, where < v, <...< i < Vg, With
Yo=-~c=and Y =o=. The probability for response k is

Plyy=k)=Plr. > 720l Ea.(1)
=0[-(n -k, )ol-@f-(n. -k, /o] 4

As above, v, =0 without loss of generality, The individual and marginal

likelihoods can be constructed in a similar fashion as the binary

response case.

Logistic Model for Binary Responses
The logistic framework for the binary response case is defined

Pz, =)= P(z" > 7)="¥lg})=[t+ explgf ]! Eq.(12)

Where W(s) is the familiar logistic function. Note that the logistic
density (not shown) has a mean of 0, a variance of n%/3, and is similar to
the r-distribution with 9 df. Extension to ordered categorical data is

similar to the normal (probit) case.
Simulation

Simulations for the binary response probit model were conducted based
on

#The log-transtorm was applied to both sides in the ILVRM development for this reason

METHODS (CONTINUED)

Methylprednisolone kinetic parameters, used initially to characterize
the four IRMs.? Lognormal interindividual variability was added to
generate population characteristics. The PK model was simulated
with CL=27 L, V=90 L, (k=03 hr') | Va(7, V=
Diag[0.04,0.09] at doses 0,10,100,1000.10000 . For the ILVRM, the
four IRMs were simulated using Egs. (1)-(2) with k; = 9 unitsthr, &, =
0.3 e, (R, =30 units), ECs,=250 ng/mL. Emax = 0.6 for
inhibitory and 1.0 for stimulatory models. and

Var( k), k), ppPeso) gty = Diagf0.09,0.04.0.04,0.09). Also,

¥ =3 or 3.8 (to keep original R,) and o=0.2. Model predictions
(marginal expectations or population means) were calculated using
the sample mean Monte Carlo method

afn h(n)dn
2, =)

Efz,)= [ E(z,fn i(n)in = [, o
“H T gfu)= 4 T Fa-(13)

where 17°, is sampled from /i(*)=N(0.£2). Simulations were
performed using NONMEM V with M=1000. ®(°) was
approximated using the method of Abramowitz and Stegun.6+

RESULTS
As with IRMs for continuous PD data, the PD nadirs and peaks for
ILVRMs also depend upon the dose {concentration profile).
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DISCUSSION

Formulating the ILVRMs on an additive etror scale (not log) with a
placebo effect, (1), under stimulatory u(r) (Eq. (2)), and collapsing
the model (as in Hutmacher, et. al., ky—eoky —eo, ki/ ky > R,) ,

9 =Rt} £,()~y = Rult)+ £,(0)~y
(‘*ﬁ]*’“’) i’

EmaxC,
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Eq.(14)

=B+t (1)

yields the familiar dental pain model of Sheiner, er. al.” Note that
for models in which R(r) —0 at large A0, g—y. Thus, extension
of additive ILVRMs can result in parameter estimates dependent

upon 7.

CONCLUSIONS

Extension of linear LV provides a convenient, theoretically
justifiable, way to apply indirect response models to OC data —
thereby narrowing the field of potential models for incorporating
IRM temporal features into analyses.

*Nonmem code supplied by Sheiner and corroborated by Beal via em$il.
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