Detecting a gene effect in pharmacokinetic models: comparison of different methods

Julie Bertrand, Emmanuelle Comets, France Mentré

INSERM U738, Paris 7 University, Bichat Hospital, Paris, France.

Inserm

Objectives

Genetic factors constitute part of the interindividual variability in pharmacokinetics (PK). The impact of genetic polymorphisms on pharmacokinetics is often analyzed using a noncompartmental approach but this requires extensive pharmacokinetic sampling and brings limited information, whereas modeling approaches provide deeper insight in the pharmacokinetics and the underlying processes. With non-linear mixed effects models, several methods can be used for the inclusion of genetic covariates during model building. In this work we place ourselves in the framework of a design devised to show the influence of a single nucleotide polymorphism (SNP) on the bioavailability of a drug, and we evaluate by simulation the statistical properties of strategies using non-linear mixed effects models.

Simulation study

Models

- · Statistical model: • f is a classic PK model with one compartment, first order absorption and elimination, at steady state
 - $y_{i,j} = f(t_{i,j}, \theta_i) + \varepsilon_{i,j}$ • parameters $\theta_i = \{ka_i, ke_i, V_i/F_i\}$ with θ_i defined by fixed effects vector μ and random effects vector b_i :
 - $\theta_i = \mu \times e^{bi}$ • residual error $\mathcal{E}_{i,j}$ normally distributed with 0 mean and
- variance $\sigma_{i,i}^2$ Model of the genetic polymorphism effect:
- SNP (C>T) leading to 3 genotypes: CC, CT, TT • effect on bioavailability trough V/F
 - $V_i/F_i = V/F \times \beta(G_i) \times e^{b_i}$
 - G_i is the genotype for subject i
 - • $\beta(G_i) = \{1, \beta_1, \beta_2\}$ for $G_i = CC$, CT or TT, respectively

Methods

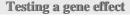
· Three estimation methods

- · FO and FOCE in NONMEM
- SAEM in Monolix using EM and MCMC approaches⁽²⁾
- Test based on an ANOVA
- the empirical Bayes estimates (EBE) of the individual PK parameters from the model with no covariate (M_0) are compared between the 3 genotypes using ANOVA
- Wald test

· Models

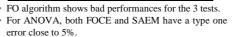
- Wald tests of the estimates of β_1 and β_2 from the model with the covariate in 3 classes ($M_{CCvsCTvsTT}$)
- three tests: $\{\beta_1=1\}, \{\beta_2=1\}$ and $\{\beta_1-\beta_2=0\}$ using estimation errors (SE) of estimates
- the global test is significant if at least one of the tests is significant with alpha=0.05/3
- Likelihood ratio test (LRT)
 - the models M_0 and $M_{CCvsCTvsTT}$ are compared using the LRT with a χ^2 with 2 degrees of freedom

- Simulation settings · Based on COPHAR2-ANRS111 clinical trial, where indinavir concentrations were collected at 1, 3, 6 and 12 hours after two weeks of treatment N = 40 (an average of 9 TT) Simulation of two exons combination effect
 - $V_{l}F_{i} = V/F \times \beta(G_{li}) \times \delta(G_{2i}) \times e^{bi}$
 - polymorphism distribution and effect inspired from literature on exon 26 and 21 of MDR1(1)
- 1000 data sets simulated under H0 (M_0)
- evaluation of type I error
- 1000 data sets simulated under H1 ($M_{CCvsCTvsTT}$) • $\beta(G_{1i}) = \{1, \beta_1 = 1.2, \beta_2 = 1.6\}, \ \delta(G_{2i}) = \{1, \delta_1 = 1.2, \delta_2 = 1.3\}$
 - evaluation of power and corrected power (with the 5th percentile computed under H0 as threshold)



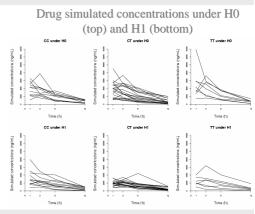
Type one error of the tests

**			
Test	Algorithm	Number of data sets	Type I error (%)
ANOVA	FO	991	21.6
	FOCE	987	5.6
	SAEM	1000	5.3
LRT	FO	989	46.9
	FOCE	965	7.9
	SAEM	1000	5.8
Wald	FO	976	20.5
	FOCE	928	9.3
	SAEM	1000	8.1



For the LRT, FOCE shows a slight significant increase • FOCE and SAEM obtain a significantly elevated type I error for the Wald test

Strategies for model building



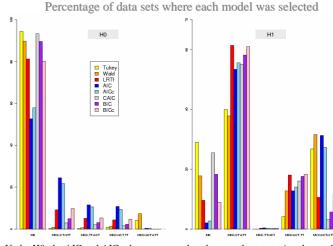
Power of the tests

Test	Algorithm	Number of data sets	Power (%)	Corrected power (%)
ANOVA	FOCE	970	71.2	69.0
	SAEM	1000	71.2	70.1
LRT	FOCE	949	78.7	70.9
	SAEM	1000	77.6	73.7
Wald	FOCE	914	55.5	31.2
	SAEM	1000	81.7	72.7

· Due to its results in term of type I error, FO power estimates are not represented on the table

Using FOCE or SAEM the three strategies have a corrected power around 70%, except for the Wald test for FOCE

Only SAEM achieve convergence on all data sets for all models



- · Under H0, the AIC and AICc show poor results whereas other strategies choose the correct model more often
- Under H1, with all methods the model $M_{CC,CTvsTT}$ is more often selected than the true one M_{CCvsCTvsTT}
- The selection result strongly depends on the strategy and/or the criteria.

Discussion

- · FOCE ran into convergence problems in up to 9% of the data sets tested, while SAEM provided estimates for all models
- With FO, false covariate inclusion was very important for all tests
- With a realistic design, ANOVA based on EBE and LRT maintained a 5% type I error using SAEM.
- · Once corrected with the result under H0, the power was similar for the 3 strategies for FOCE and SAEM, except for the Wald test with FOCE, where correlation between estimates and their estimation error leads to lack of power
- somewhat disappointing, but the design is rather small (40 patients)
- Further studies are required to provide recommendations

 Marzolini C, Paus E, Buclin T, Kim R B. Polymorphisms in Human MDR1 (P-glycoprotein):
Kuhn and Lavielle. Maximum likelihood estimation in nonlinear mixed effects model. *Comput* ent advances and clinical relevance. Clinical Pharmacology and Therapeutics 2003; 75:13-33. nal Statistics and Data Analysis 2005; 49:1020-1038.

- *M_{CCvsCTvsTT}*: gene effect in 3 classes
- $M_{CC,CTvsTT}$, $M_{CC,TTvsCT}$, and $M_{CCvsCT,TT}$: three intermediate models with the covariate in two classes

Methods

· Selection based on tests

• M₀: no gene effect

- Selection based on Tukey tests after ANOVA on the EBE from model M_0
 - M_0 is selected, if none of the 3 Tukey tests is significant
 - $M_{CCvsCTvsTT}$ is selected if the three tests are significant
- · intermediate models are selected depending on which tests are significant
- Selection on Wald tests on the estimates of the genotype effects from M_{CCvsCTvsTT}
 - · tests as described previously
- · model selection similar to that using EBE
- · Forward selection using the LRT

Selection based on criterion

· Several criterion are studied, the model with the minimal criterion is chosen • AIC = -2L + 2P20/0.

$$AICc = AIC + \frac{2P(P+1)}{1}$$

- $BICc = -2L + P \ln N$
- $CAIC = -2L + P (\ln ntot+1)$ BIC = $-2L + P \ln ntot$
- where L: model loglikelihood; P: total number of population model parameters, N: sample size, ntot: total number of observations

- · Under H0, AIC and AICc show poor selection capacity
 - Under H1, performances to detect the good model where
 - in model selection strategies