A Longitudinal Model for Tumor Growth Size Measurement in Clinical **Oncology Studies**

Claret, L. (1), P. Girard (2), K.P. Zuideveld(3), K. Jorga (3), J. Fagerberg (3), R. Bruno (1) (1) Pharsight Corp., Mountain View, CA; (2) INSERM, EA3738 University Lyon Sud, Oulins, France; (3) F. Hoffmann-La Roche, Basel, Switzerland

Introduction

- . Phase III efficacy of new anti-cancer treatment is currently assessed using survival data. This endpoint is impractical for go/no go decision during earlier phases. The analysis of tumor response in clinical studies of anti-cancer drugs remains very empirical (assessment based on response rate).
- This model can be used to predict Phase 3 survival outcomes (not shown) in order support decision-making.

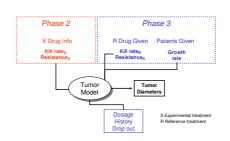
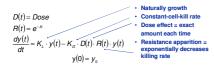



Figure 1. Functional Schema

Data

- · Parameter estimation
 - Capecitabine data: phase II (2 studies, 170 patients)
 - Docetaxel data: phase III (docetaxel arm, 223 patients)
- Simulation
 - Tumor size reduction at week 6 in phase III capecitabine docetaxel vs. docetaxel (443 patients, 1000 replicates) study

The model describes sum of tumor larger diameters in function of time and dose

y(t): Larger diameter at time t (mm) D(t): Effective Dose at time t (g)

R(t): resistance function decreasing with time, ranging from 1 (no resistance) to 0 (no more drug action) λ: rate constant of resistance apparition (t⁻¹)

K_L: tumor growth rate (t⁻¹) K_n: drug constant-cell-kill rate (g⁻¹.t⁻¹)

Capecitabine: Phase 2 (n=170 with tumor diameter >=10mm and at least one tumor measurement after baseline)

Table I Model parameters for capecitabine Phase 2

	KL	KDc	λχ	ΩL	QD:	ΩDKL	Ωλ
Value	0.022	0.019	0.030	0.699	0.521	0.466	1.080
Ste	0.006	0.004	0.013	0.187	0.304	0.449	0.409

Docetaxel: Phase 3 (n=223 with tumor diameter >=10mm and at least one tumor measurement after baseline)

-	p p											
		KL	K _{Dd}	λd	₽L.	₽Dd	ΩLKD	Ωs				
	Value	0.009	0.340	0.046	0.425	1.630	1.190	0.961				

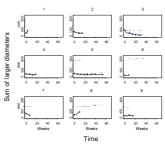
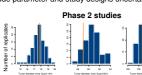



Figure 1.Typical model fits of tumor size data for capecitabine in phase II (MBC patients)

Model simulations

The model was qualified by simulating phase 2 and phase 3 studies. Simulated studies were replicates a large number of times in order to include parameter and study designs uncertainties.

Tumor diameter (mm) at week 6 Figure 3. Model checking: 10%, 50% and 90% quantiles of predicted tumor diameter (distributions across 100 replicates) compared with observed quantiles (vertical lines)

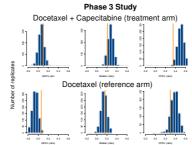


Figure 4. Model prediction: 25%, 50% and 75% quantiles of tumor size reduction (relative to baseline) at week 6 (distribution across 1000 replicates) vs. observed (vertical lines)

Conclusion

- The tumor size model is qualified:
- To predict tumor diameter at week 6
- To predict phase 3 tumor diameters changes at week 6 in combination arm
- This model is a part of a modeling framework* to simulate expected clinical response of new compounds and to support end of phase II decisions and design of phase III studies.
- *: Claret L. Girard P., O'Shaughnessy J., Hoff P., Van Cutsem E., Blum J. Zuideveld K.P., Jorga K., Fagerberg J., Bruno R. Proc. Am. Soc. Clin. Oncol., 2006 # 6025