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• Optimal design techniques are gaining acceptance as a tool for designing PK 
and PKPD studies [1,2].

• These designs are based on finding the maximum of a scalar function of the 
information matrix (usually the determinant) – this provides the optimum 
sampling times for a given set of models and parameter values.

• Clinical acceptability of an optimized design requires that windows are 
provided around the optimal sampling times [1,2].

• These sampling windows are designed to provide regions of acceptable sub-
optimality.

• To explore the use of an MCMC approach for estimating sampling windows

• The model was a first order input and first order output, one-
compartment model, given by:

• A fully Bayesian method has been described for determining the full 
posterior distribution of optimal sampling times from which specific 
sampling times can be chosen and sampling windows defined

• The method is convenient (in terms of computation effort) and appears 
robust to our choice of the prior on the sampling times
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Prior for parameters
• The prior on the parameter space was assumed to be given by a lognormal 

distribution where,
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Prior for sampling times
• The prior for the n sampling times on the design space is given by

Posterior
• The (pre-) posterior distribution of the sampling times was obtained by 

integrating the following expression using the Metropolis Hastings algorithm
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• Two priors were considered, a mixture of uniforms or ordered uniforms
• For n = 2 sampling times these provide the following prior (Figure 1)

• A fully Bayesian method is described that involves defining:
• priors on the sampling times and the parameter values
• a utility function

• The posterior distributions for the sampling times are obtained using MCMC

• The sampling windows were defined as the 95% credible interval of the 
posterior distribution of the sampling times
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• The parameters were assumed to be lognormally distributed, 

where θ = [ln(20), ln(1), ln(0.1)] and ωii = 0.1 for all i
• The dose was 400 units and an additive residual variance model with a 

variance of 0.1 was assumed.
• Three sampling times were considered (data for mixture of uniforms prior is 

shown).
• Histograms of the sampling windows are provided in Figure 2, and for the 

asymptotic estimates of the expected standard error in Figure 3.

Figure 2: Sampling Times 
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 Figure 3 Standard Errors ( % ) 
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• The posterior mode of the sampling times were 0.46, 2.7 and 15 hours
• The optimal sampling windows were (0.08, 3.1) (1.9, 8.9), (9.6, 21.8) hours
• The two priors gave comparable estimates of the windows
• The 97.5th percentile of the expected standard errors of the parameters were 

less than 30% 

Figure 1: Prior 
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Utility function
• The utility (U) was given by the inverse square of the product of the relative

standard errors (i denotes the ith iteration of the MCMC algorithm), and M the 
Fisher information matrix
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