

Are population PK and/or PD models adequately evaluated?

A survey of the literature between 2002 to 2004

K. Brendel⁽¹⁾, C. Dartois⁽²⁾, E. Comets⁽¹⁾, A. Lemenuel-Diot⁽³⁾, C. Laveille⁽⁴⁾, B. Tranchand^(2,5), P. Girard^(2,6), C. Laffont⁽³⁾ and F. Mentré⁽¹⁾.

(1) INSERM U738, Paris, France; (2) EA3738, Lyon, France; (3) IRIS Servier, Courbevoie, France; (4) Exprimo, Lumnen, Belgium; (5) CLB, Lyon, France; (6) INSERM, Lyon, France

Introduction

- Evaluation for non linear mixed-effects models is a complex issue in statistical modeling and is called by different terms:
 - Evaluation, validation, qualification, adequacy,
 assessment, checking, appropriateness, performance...
- There is no consensus on a general approach to evaluate a population model for PK and/or PD analyses
- FDA has stressed the need for model evaluation (1999)

Objectives of the review

- Primary objective
 - Survey the different methods currently used to evaluate PK and/or PD population models
- Secondary objective
 - Assess whether those models were adequately evaluated

Methods

- Articles selection
- Data abstraction form (DAF) building
- Data collection
- Population model evaluation section in the DAF

Methods

 Population model evaluation section in the DAF

Evaluation methods divided into 3 subsections in the DAF

- Basic internal evaluation
 (Goodness-of-fit plots (GOF), uncertainty
 on parameter estimates)
- Advanced internal evaluation (Data splitting, resampling techniques, Monte Carlo simulations)
- External evaluation (predictability of the model on the external dataset)

Subjective synthesis

- 1. Was there an attempt to evaluate the model?
- 2. Was the type of evaluation justified?
- 3. Was the choice of the metrics appropriate?
- 4. Was the model evaluated?
- 4 possible answers: no, poor, good, excellent

Results: population model evaluation (360 PK models, 118 PD models)

Type of evaluation	PK	PD
Basic internal	74%	76%
Advanced internal	28%	16%
External	7%	8%

Basic internal evaluation

GOF used and shown (65%, 60%)

PRED vs OBS (36%, 25%)

IPRED vs OBS (29%, 14%)

OBS vs time with mean PRED (26%, 35%)

Basic internal evaluation

Uncertainty on parameter estimates (SE or CI):

		Standard
	Estimate	error
β_1	0.023	0.0016
$oldsymbol{eta}_2$	0.000 057	0.000 055
$eta_2 \ eta_3$	0.57	0.053
Interpatient variability	0.15 (38.7%)	0.038
in clearance		

For fixed effects (53%, 42%)

For random effects (26%, 11%)

- Uncertainty mostly obtained by:
 - Fisher information matrix (78%, 87%)

Advanced internal evaluation

- Data splitting (13%, 3%)
 - With randomization (7%, 0%)
 - Size of validation dataset/entire dataset, median (1/3, 1/4)
- Bootstrap (9%, 5%)
 - Number of bootstrap samples, median (500, 200)
- Cross validation (3%, 4%)
 - Number of groups, median (10, 13)

Advanced internal evaluation

Monte Carlo simulations (8%, 6%)

Aim of simulations:

Visual Predictive Check (3%, 3%)

Statistical Predictive Check (2%, 0%)

External evaluation (7%, 8%)

- External dataset obtained from studies with less than 50 patients
- Same inclusion criteria (3%, 6%)
- Same dose regimen (2%, 0%)
- Same sampling scheme (1%, 5%)

Metrics used for model evaluation

- For observations:
 - Prediction errors (PE or RES) and standardized prediction errors (SPE or WRES) were the most used metrics
 - From these metrics, bias (mean of PE or MPE) and root mean square errors (RMSE) were the most reported
- For individual and population parameters:
 - MPE was the most reported

Subjective synthesis

- 1. Was there an attempt to evaluate the model? no/poor (62%, 68%); good/excellent (38%, 32%)
- 2. Was the type of evaluation justified? no/poor (79%, 86%); good/excellent (21%, 14%)
- 3. Was the choice of the metrics appropriate? no/poor (72%, 74%); good/excellent (28%, 26%)
- 4. Was the model evaluated?

 no/poor (72%, 74%); good/excellent (28%, 26%)

Conclusion

- The first large review of literature for population model evaluation
 - SE or CI reported in only 1/2 of the models for fixed effects and even less for random effects
 - Advanced methods used only in 1/4 of analyses
 - Data splitting was the technique the most used among the advanced methods
- Model evaluation was judged good or excellent in only 1/4 of the models

Acknowledgments

All the authors who have published papers between 2002 and 2004...