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Aim: Clinical effectiveness of many drugs can only be assessed in terms of scores quantifying the 
patient status (symptoms’ intensity). Generally speaking scores are ordered categorical variables, 
however, when the number of categories is big enough they can be considered as continuous, 
though they are constrained and never exceed lower and upper limits. Also, drug effects on scores 
are indirect in nature that requires application of indirect response models (IRMs). A general IRM for 
clinical efficacy data was published previously [Piotrovsky V. Drug Efficacy Analysis as an Exercise in 
Dynamic (Indirect-Response) Population PK-PD Modeling. 11th PAGE Meeting, Paris, France, 2002]. 

This work was undertaken to demonstrate the application of such a model to efficacy data of 
two trials conducted in different centers. The results of the standard biostatistical analysis based on 
changes from a baseline observed at the last visit was controversial: the drug shows efficacy 
compared to placebo in one center, but not in the other one. Modeling exercise was aimed to 
identify possible reasons for this discrepancy in terms of IPM parameters.

Data: Efficacy endpoints and plasma drug levels were subject to concentration-response analysis. 
The score may take any integer value between 0 and 70. Study designs were similar: patients were 
randomized into parallel groups, and one group received placebo while others the active drug 
(Center 1: 8, 16 and 24 mg per day; Center 2: 16 and 24 mg). The overall duration of the studies 
was 22 weeks. The score was assessed at randomization and after approx. 4, 12 and 22 weeks of 
treatment. Figure 1 shows the average scores per dose group versus week. 

The population pharmacokinetic (PK) modeling was conducted and individual predictions of 
steady-state plasma concentrations (Css) to be used in further PK-efficacy modeling were obtained. 

Results: The model provides a good fit as confirmed by the plot of observations versus population 
and individual predictions (Figure 3). Figure 4 shows typical score profiles versus time. 

In addition to study differences in the baseline score, K and C50 were found to differ 
significantly between centers (P<0.001). On the contrary, Emax and KT were the same:

K (day-1) C50 (ng/mL) Emax (logit units) KT (day-1)
Center 1: 0.00370    58.9 -0.975 0.00118 
Center 2: 0.00268 235 idem idem

This explains at least partly why the formal biostatistical analysis could not prove efficacy in the study 
conducted in Center 2. Firstly, most of patients of the 2nd study had Css much lower than C50 (see 
Figure 5). Secondly, the drug effect could not develop fully within the relatively short trial duration 
due to very low K, which determines how fast the system react on the changes in stimuli. The half-
equilibration time was 27 and 37 weeks in Center 1 and 2, respectively. Other parameter estimates 
were DP=4.56 and EP=-4.85.

Population prediction

O
bs

er
ve

d 
sc

or
es

24 26 28

10
20

30
40

50
60

Individual prediction
10 20 30 40 50 60

10
20

30
40

50
60

Week

Sc
or

e
20

22
24

26
28

30

0 4 12 22

Placebo
8 mg
16 mg
24 mg

Center 1

Center 2

Figure 1: Mean score versus time profiles
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Figure 3. Goodness-of-fit plots

Figure 2. Steady-state drug concentrations in Center 1 and 2.

Model: The rate of score change is a difference between the rates of deterioration (rD) and 
amelioration (rA):

dR/dt = rD – rA

Initial conditions are: R(0) = R0 (“baseline”). rA is assumed proportional to the current value of R, 
and the proportionality coefficient K (equilibration rate constant) indicates how fast the system 
stabilizes after a perturbation, e.g., treatment initiation:

dR/dt = rD – K*R (1)

It is assumed that the drug affects rD, namely reduces it. For convenience, rD is replaced by a 
parameter having the properties of scores. Since R is restricted dR/dt must tend towards zero when t 
→ ∞. The asymptotic value of R at t → ∞, RP, will replace R in Eq 1: rD – K*RP = 0. rD can then be 
expressed via RP: rD = K*RP. Substituting this into Eq 1 gives:

dR/dt = K*(RP – R) (2)

Eq. 2 describes disease progression, and RP is an ultimate score: if RP>R0 the patient deteriorates 
otherwise he/she remains stable or spontaneously improves. K controls the rate of changes. The 
drug should thus reduce RP, and if the effect significantly exceeds that of placebo the drug is 
efficacious. RP becomes thus a composite parameter incorporating various (fixed and random) 
effects. To keep it within the boundaries these effects are considered in the logit domain:

RP = 70*exp(logit(RP))/(1 + exp(logit(RP))),

and their contribution is additive:

logit(RP) = logit(R0) + DP + EP + ED.

DP, EP and ED stand for disease progression, placebo and drug effects, respectively. According to 
this implementation, the disease progression is a shift in the logit domain. Graphical analysis of 
mean score versus time (Figure 1) show that after initial decrease due to drug/placebo effect R 
increases, and this may indicate the gradual weakening of one or both effects, in other words, long-
term “tolerance”. It is implemented as an exponential decay of EP and ED governed by a rate 
constant KT. “Tolerance” makes EP estimable: otherwise it cannot be separated from DP.

The steady-state plasma concentration of the drug, Css, was used as a predictor of the drug 
effect though an Emax model:

ED = Emax*Css/(C50 + Css)

Where Emax is a maximal drug effect in a logit domain, and C50 is a plasma concentration 
corresponding to the half-maximal effect. A linear concentration-effect model was also tested, but 
was found to be inferior. Figure 2 shows the distribution of Css in various dose groups in Center 1 
and 2. There are almost no differences in exposure between centers.

The fixed effect of the study center on R0 was included as it was evident from the data 
(Figure 1). Other effects were also tested using the likelihood ratio test (see Results). The model 
incorporated individual random effects on K, R0 and DP. The normal distribution and constant 
variance model was postulated for logit(R0) and DP. In the case of K the exponential variance model 
was assumed. All random effects were correlated except those on K and DP. The constant-variance 
residual error model was used. 
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Figure 4. Predicted typical score versus time profiles Figure 5. Predicted typical Css-effect profiles. 
The arrow at the bottom shows the Css range.

Conclusion: The model presents a platform for analysis and simulation of clinical efficacy/safety 
trials where endpoints are scores. It is still under development, in particular aimed to optimize 
random effects that is important for simulation to better design studies (determine an optimal trial 
duration, number of patients to be recruited, etc.). Another potential application can be prediction 
of clinical effects from in vitro (e.g. receptor binding) and preclinical studies.

Methods: NONMEM V software and the first-order conditional estimation method was used. 


