Population Pharmacokinetics of the new Antiepileptic Drug Lacosamide in Healthy Subjects with Different Age and Gender

B. Schiltmeyer · W. Cawello · D. Kropeit · R. Horstmann

Clinical Development, SCHWARZ BIOSCIENCES GmbH, Monheim, Germany

Introduction

Lacosamide (R-2-acetamido-N-benzyl-3-methoxypropionamide, formerly known as harcoseride) is a new drug under clinical development by Schwarz Biosciences for the treatment of epilepsy and neuropathic pain. About 40% of the drug is renally excreted as unchanged compound. Major metabolic pathway is demethylation, the inactive O-desmethyl-metabolite is excreted with the urine and represents about 30% of the dose.

Objectives

- To characterize population pharmacokinetics of unchanged lacosamide in healthy elderly males and females (>65 years) in comparison to young healthy males (18-45 years)
- To identify possible covariates that may have an influence on the pharmacokinetics (PK) of lacosamide in the trial population of healthy subjects to explain inter-individual variability

Study Design

- Double-blind, placebo-controlled, parallel group trial
- 47 subjects in 3 groups:
- 15 elderly males (EM): 11 verum, 4 placebo
- 16 elderly females (EF): 12 verum, 4 placebo
- 16 young males (YM): 12 verum, 4 placebo
- Day 1, 8: 100 mg lacosamide oral single dose administration
- Day 4, 5, 6, 7: 100 mg lacosamide bid oral administration
- 33 blood samples were taken from Day 1 to Day 11 at the following time points:
- 0 (pre-dose), 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 132, 144, 156 hours following first dose on Day 1
- 0 (pre-dose), 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 24, 36, 48 and 72 hours following last dose on morning of Day 8

Tested Covariates

- Age
- Sex
- Body weight (BW)
- Height
- Body Mass Index (BMI)
- Creatinine Clearance (CL_{crea}): Calculated using Cockcroft-Gault equation based on serum creatinine, age, weight and sex

Pharmacokinetic Methods

- Software: NONMEM Version 5 in combination with PDxPop Version 1.1
- Subroutine ADVAN2: One-compartment model with first-order absorption and elimination with the parameters:
- $-k_a$: rate constant of absorption
- k_e: rate constant of elimination
- V/f: apparent volume of distribution

Bioanalytical Method

- Highly sensitive and selective LC-MS/MS method for lacosamide with deuterated internal standard (solid-phase extraction)
- Calibration range: 0.01 10 µg/mL

Results

Demographic Parameters for each Group (Arithmetic Mean ± SD)

Group*	N	Age [years]	Height [cm]	Weight [kg]	BMI [kg/m²]
EM	15	71.9 ± 6.4	173.6 ± 8.2	80.1 ± 11.6	26.5 ± 2.6
EF	16	68.9 ± 3.9	161.7 ± 6.4	66.1 ± 10.3	25.2 ± 2.9
YM	16	36.0 ± 6.7	177.6 ± 8.0	77.7 ± 11.2	24.6 ± 2.6

*EM = Elderly males, EF = Elderly females, YM = Young males

Base Model Development

The objectives of the base model development were:

- To identify the most suitable error model for the description of residual random variability
- To identify the most suitable model for the description of inter-individual variability (IIV) of population PK parameters

The following model was chosen as base model for the evaluation of possible covariates during the final model development :

- Combined residual random error model (proportional and additive component)
- Exponential inclusion of inter-individual variability on k_e, k_a and V/f
- No lag-time

Final Model Development

Diagnostic Plots Covariates vs. Individual PK Parameters k_e vs CLcrea V/f vs Height

V/f vs Weight

Statistical Testing of Covariates

The following table summarizes important steps of covariate testing on the base model (without covariates) during final model development:

Description	OBF	II∨	IIV	ⅡV	Residual
of covariates		of	of	of	Error σ
		k _e [%]	k _a [%]	V/f [%]	(Prop./Add.)
Base Model	-1660.2	19.2	112	21.4	7.9%/0.06
Body weight on V/f	-1415.1	21.6	123	40.9	7.6%/0.08
Height on V/f	–1718.7	18.6	117	11.9	7.9%/0.06
Sex on V/f	-1701.7	19.4	115	14.0	7.9%/0.06
Age on k _e	-1222.2	35.4	119	25.0	7.4%/0.13
CL _{crea} on k _e	-1720.1	16.4	112	21.5	8.2%/0.06
Height + Sex on V/f					
CL _{crea} on k _e	-1783.0	15.9	117	10.3	8.2%/0.06
Height + Sex on V/f					
CL _{crea} + Sex on k _e	-1805.8	14.7	117	10.2	8.2%/0.05
Height + Sex on V/f CL _{crea} on k _e Height + Sex on V/f	-1783.0	15.9	117	10.3	8.2%/0.06

OBF = Objective Function, IIV = inter-individual variability

Final Model

The following model was chosen as final model with the following characteristics:

- 1-comp.-model with first-order absorption and elimination without lag-time (ADVAN2, FOCE)
- Height and sex as covariates on V/f
- CL_{crea} and sex as covariates on k_e
- Low inter-individual variability (<15%) for V/f and k_e
- Low residual variability: 8.2% (proportional error), 0.05 µg/mL (additive error)
- Predominantly high precision of final estimates (RSE < 25 %)

Final Population PK Parameter Estimates

Parameter	Final Estimate [%RSE]	IIV [%RSE]	
V/f [L]	42.4 + θ 4 * (Height – 169)	10.2 % [27.9]	
	+ θ 5 * Gender [2.7]	10.2 /0 [27.7]	
$k_e [h^{-1}]$	0.0225 + θ 6 * CL _{crea}		
	+ 0 7 * Gender [17.2]	14.7% [17.5]	
$k_a [h^{-1}]$	4.20 [12.2]	117% [29.1]	
θ 4	0.415 [23.9]	_	
θ 5	-6.90 [25.5]	_	
θ 6	0.000245 [17.4]	_	
θ 7	0.00705 [36.9]	<u> </u>	
Residual Error σ	8.15% / 0.0532 µg/mL [8.58, 35.1]	_	

 $*\theta$ = mean parameter (THETA), IIV = inter-individual variability,

%RSE = relative standard error in percent

The following population means were estimated for a subject with a median height of 1.69 m and a median CL_{crea} of 89 mL/min:

	Males	Females [change]*
V/f [L]	42.4	35.5 [–16%]
t _{1/2} [h]	15.6	13.5 [-14%]
$k_a [h^{-1}]$	4.20	4.20

*decrease compared to males

Goodness of Fit of the Final Model

Measured Conc. (DV)

Population Predictions (PRED) vs.

Population Predictions (PRED) vs. Residuals (RES)

Simulation Based on Final Population Estimates: Males **Females**

Discussion

- A major part of inter-individual variability of V/f (~10%) could be explained by differences in height and sex:
- Observed higher plasma concentrations of lacosamide in females are the result of the smaller V/f in this subpopulation.
- As lacosamide is highly soluble in water and mainly distributes in extracellular fluid, changes in height are linked with changes in V/f.
- \blacksquare A smaller part of inter-individual variability of k_e (~ 5 %) could be explained by differences in CL_{crea} and sex.

Conclusion

- An adequate population PK model was developed for the description of plasma concentrations of lacosamide in healthy subjects.
- Inter-individual variability of V/f and k_e can be explained to a large extent by differences in height, sex and CL_{crea}.
- Exposure of lacosamide is highly predictable in individuals.
- The current population PK model will be used as basis for PopPK evaluations in Phase 2/3 to verify the results in the target population.