A physiologically based population pharmacokinetic model

describing the non-linear disposition and blood distribution of indisulam

Anthe Zandvliet, Sanae Yasuda, Jan Schellens, Jos Beijnen, Alwin Huitema

The Netherlands Cancer Institute Antoni van Leeuwenhoek Hospital

Overview of presentation

- Introduction indisulam
- Objectives
- Data
- Physiological model
 - Protein binding
 - Distribution to red blood cells
 - Tissue distribution
 - Elimination
- Implications for pharmacodynamic studies
- Conclusions

Indisulam

- Sulphonamide anticancer agent
- Inhibition of G1/S transition
- Phase II clinical development
- Objective responses in patients with colorectal, breast and renal cell cancer

Non-linear pharmacokinetic profile

Objectives (1)

- To develop a physiological population pharmacokinetic model for indisulam describing time profiles of:
 - a) free plasma concentrations
 - b) total plasma concentrations
 - c) erythrocyte concentrations

Objectives (2)

 To examine the role of plasma protein binding and distribution to erythrocytes in indisulam pharmacokinetics.

Phase I studies

	regimen	dose (mg/m ²)	population	n
1.	daily x 1	50 - 1000	Caucasian	40
2.	daily x 5	10 - 200	Caucasian	35
3.	weekly x 4	40 - 500	Caucasian	43
4.	120-hour inf.	30 - 1000	Caucasian	25
5.	daily x 1	400 - 900	Japanese	21

Backbone of the physiological model

4 physiological compartments:

Distribution volumes

Ref: Surg Gynecol Obstet 1957; 104(2):183-189.

Saturable plasma protein binding

Saturable plasma protein binding

Saturable plasma protein binding

indisulam albumin 1:1 binding complex

B_{max} = [albumin] (g/L) * MW_{indisulam} / MW_{albumin} * 1000 mg/L

Central compartment

Three compartment model

Three compartment model

Distribution to erythrocytes

One site binding model saturable

Two site binding model saturable + non-specific

Binding in erythrocytes

Carbonic anhydrase conc. in erythrocytes 133-186 uM

Tissue distribution

distribution

Drug elimination

Goodness of fit

The model adequately described the data.

Impact of hematocrit & albumin

Albumin (g/L)	Hematocrit	Dose (mg/m²)	AUC (mg*h/L) plasma, total	AUC (g*h) tissue
40	0.4	700	2352 (100%)	58.6 (100%)
40	0.2	700	2118 (90%)	53.5 (91%)
20	0.4	700	1272 (54%)	57.5 (98%)

Discussion

 Total plasma concentrations may not be a preferable target in pharmacodynamic studies of indisulam.

 Improved insight into the disposition of indisulam may facilitate the establishment of new PK-PD relationships.

Conclusions

- The physiological model adequately described indisulam pharmacokinetics in the monitored compartments.
- The model has elucidated the important impact of plasma protein level on indisulam disposition.

Acknowledgments

This research was supported by Eisai Ltd.

Jan Schellens Jos Beijnen Alwin Huitema

Sanae Yasuda Tomio Takamatsu Yuichi Inai