

PAGE 2005 Introduction to Categorical Data Analysis

Adrian Dunne

Department of Statistics and Actuarial Science, Roinn na Staitisticí agus na hAchtúreolaíochta University College Dublin An Coláiste Ollscoile Baile Átha Cliath

Data Types

- Quantitative
 - Continuous Plasma drug conc., BP, Muscle Tension, Time
 - Discrete Number of blood cells, Number of heart attacks
- Categorical
 - Nominal Re
 - Ordinal
 - Binary

- Religion, Nationality, Gender
- Social class, Treatment outcome
- Gender, Dead/Alive

Binary Data

• Describe the two categories as "Success" (S) and "Failure" (F).

• Code

$Z = 0 \quad \text{for } F$ $Z = 1 \quad \text{for } S$

Binary Data

• Proportion of S in population.

• Randomly select a member of the population – probability of S.

• Proportion = Probability

Binary Data

• Z has the Bernoulli Distribution

Pr
$$(Z = 1) = \pi$$
 Prob of S
Pr $(Z = 0) = 1 - \pi$ Prob of F
Pr $(Z = r) = \pi^{r} (1 - \pi)^{(1-r)}$ $r = 0,1$

Estimation: Method of Maximum Likelihood

• Likelihood

$$L(\pi) = \prod_{i=1}^{n} \pi^{z_i} (1 - \pi)^{(1 - z_i)}$$

• $\hat{\pi}$ is the value of π that maximises the likelihood

Simple Example

10 observations:- 3S's 7F's Simple model with no structure

 $Z \sim Bernoulli(\pi)$

$$L(\pi) = \prod_{i=1}^{n} \pi^{z_i} (1 - \pi)^{(1 - z_i)}$$

Data Modelling

- Previous example had no structure in the data.
- Consider the case where the subjects were administered different doses of drug and the response depends on dose.
- Another example would be where response changes with time following drug administration (PK-PD).

Data Modelling

• Take account of the structure by recording the values of covariates (*x*'s) for each member of the sample e.g. dose, time.

• Then construct a model which describes how the parameters depend on the covariates.

• We model π_i e.g.

$$\pi_i = f(x_i, \theta)$$

• However,

$$0 \le \pi_i \le 1$$

• There is no guarantee that

$$0 \le f(x_i, \hat{\theta}) \le 1$$

Modelling Binary Data

Transform π_i from (0,1) to ($-\infty,+\infty$) and model the transformed value to ensure that model predicted probabilities lie in (0,1).

Transformations

- Logit $\log it(\pi_i) = \log \left(\frac{\pi_i}{1 \pi_i}\right)$
- Probit $\operatorname{probit}(\pi_i) = \Phi^{-1}(\pi_i)$
- Log-log $\log(-\log(\pi_i))$
- Complementary log-log $\log(-\log(1-\pi_i))$

Now consider a model with structure

$$logit(\pi_i) = f(x_i, \theta)$$

Example

$$\operatorname{logit}(\pi_i) = \theta_1 + \theta_2 x_{1i} + \theta_3 x_{2i} + \dots$$

Example: Bioassay

Beetle deaths following dosing with an insecticide

Dose	# Exposed	# Dead
0.0028	40	5
0.0056	40	19
0.0112	40	31
0.0225	40	34
0.0450	40	39

Copyright Adrian Dunne 2005

Logit Model

Linear logistic model with log(dose) $z_i \sim Bernoulli(\pi_i)$

$$\log \operatorname{it}(\pi_i) = \theta_1 + \theta_2 \log(\operatorname{dose}_i)$$

$$L(\mathbf{\theta}) = \prod_{i=1}^{n} \pi_{i}^{z_{i}} (1 - \pi_{i})^{(1 - z_{i})}$$

Observed & Predicted Values

Mixed Effects Modelling

• Modelling correlation between responses/variation between groups.

– Groups of related items

- Repeated measures/Longitudinal data

Example: Binary PK-PD response

• 10 subjects all received dose of 100 units.

• Bolus iv administration.

Binary response (dry mouth) recorded for each subject at times 0.5, 1, 2, 3, 5, 7, 9, 12, 15, 18, 24, 30 hours.

PK-PD Model

• Linear PD model

 $Eff(t) = \theta_1 + \theta_2 C_{\rho}(t)$

 $logit(\pi(t)) = \theta_1 + \theta_2 C_{\rho}(t)$

Example: Binary Population PK-PD model

• Variation between subjects

• Longitudinal (repeated measures) data – observations on same subject are correlated

• Model intrasubject correlation and intersubject variation using random effects

Example: Binary Population PK-PD model

logit
$$(\pi_i(t_j)) = \theta_1 + \theta_2 C_e(t_j) + \eta_i$$

 $\eta_i \sim N(0, \Omega)$

$$L(\mathbf{0}, \Omega) = \prod_{i=1}^{n} \int_{-\infty}^{+\infty} \prod_{j=1}^{m_i} \pi_i(t_j)^{z_i} (1 - \pi_i(t_j))^{(1-z_i)} f(\eta_i, \phi) d\eta_i$$

Observed & Predicted Values

• Consider again the insecticide bioassay

 Assume that each insect has an (unobserved) tolerance t_i which varies randomly across the population of insects

$$t_i \le d_i \Longrightarrow z_i = 1$$
$$t_i > d_i \Longrightarrow z_i = 0$$

• d_i is known as the cut-point

• Here the latent variable is tolerance

$$\pi_i = \Pr(t_i \le d_i)$$

$$\pi_i = \int_{-\infty}^{d_i} f(t_i, \boldsymbol{\beta}) dt_i$$

$$f(t_i, \boldsymbol{\beta}) = \frac{\exp((t_i - \beta_0) / \beta_1)}{\beta_1 (1 + \exp((t_i - \beta_0) / \beta_1))^2}$$
$$\log it(\pi_i) = \theta_1 + \theta_2 d_i$$

$$f(t_i, \boldsymbol{\beta}) = \frac{\exp((\log(t_i) - \beta_0) / \beta_1)}{t_i \beta_1 (1 + \exp((\log(t_i) - \beta_0) / \beta_1))^2}$$
$$\log it(\pi_i) = \theta_1 + \theta_2 \log(d_i)$$

$$f(t_i, \boldsymbol{\beta}) = \frac{\exp(-0.5((\log(t_i) - \beta_0) / \beta_1)^2)}{t_i \sqrt{2\pi} \beta_1}$$

$$\operatorname{probit}(\pi_i) = \theta_1 + \theta_2 \log(d_i)$$

38

$$f(t_i, \boldsymbol{\beta}) = \frac{\exp((t_i - \beta_0) / \beta_1) \exp(-\exp((t_i - \beta_0) / \beta_1))}{\beta_1}$$

 $\log(-\log(1-\pi_i)) = \theta_1 + \theta_2 d_i$

$$f(t_i, \boldsymbol{\beta}) = \frac{\exp((\log(t_i) - \beta_0) / \beta_1) \exp(-\exp((\log(t_i) - \beta_0) / \beta_1))}{t_i \beta_1}$$
$$\log(-\log(1 \pi_i)) = \theta_1 + \theta_2 \log(d_i)$$

Ordinal Data

• Ordered categories e.g. severity of symptoms, none, mild, moderate, severe.

• Ordered categories Z = 1, 2, ..., K

• Probabilities

 $\pi_1, \pi_2, ..., \pi_K$

Cumulative Logits

• Cumulative probabilities

$$F_k = \pi_1 + \pi_2 + \ldots + \pi_k$$

• Cumulative Logits

$$L_k = \text{logit}(F_k) = \log\left(\frac{F_k}{1 - F_k}\right) \quad k = 1, 2, ..., K - 1$$

- A model for L_k is a logit model for a binary response.
- We need *K*-1 logit models

Cumulative Logits

Based on K-1 dichotomizations.

- (1) and (2 to K)
- (1 and 2) and (3 to K)
- (1 to 3) and (4 to K)

- etc.

Proportional Odds Model

• Covariate *x* influences all cumulative logits equally

$$logit(F_k) = \alpha_k - f(x,\theta)$$

• Such a model is equivalent to *x* influencing the location (but not the spread) of the distribution of the latent variable.

Proportional Hazards Model

• Covariate *x* influences all cumulative complementary log-logs equally

$$\log(-\log(1-F_k)) = \alpha_k - f(x,\theta)$$

• Such a model is equivalent to *x* influencing the location (but not the spread) of the distribution of the latent variable.