An adaptive design for dose-response using the Normal Dynamic Linear Model (NDLM)

Mike K Smith¹, Mark F. Morris¹, Ieuan Jones¹, Andy P. Grieve¹, Keith Tan²

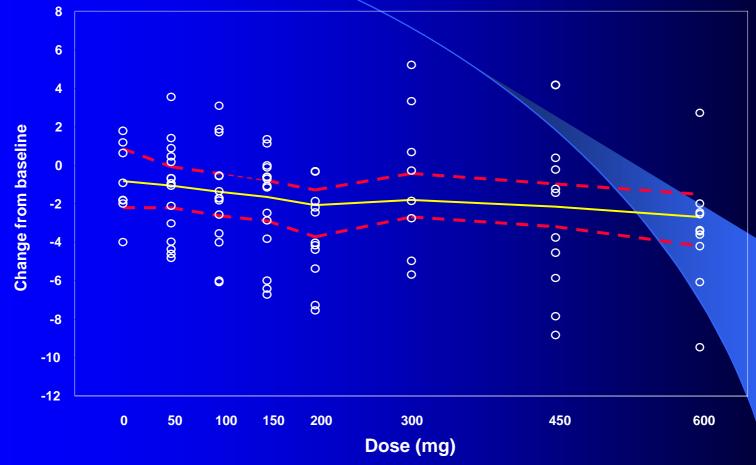
¹ Biostatistics and Reporting, PGRD Sandwich; ² Clinical Sciences, PGRD Sandwich

Introduction

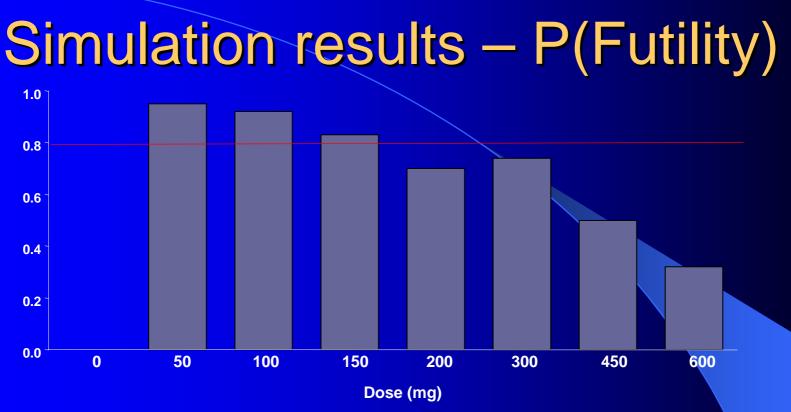
- Normal Dynamic Linear Models have been used in adaptive designs before at Pfizer.
 - ASTIN stroke trial
- There are often pragmatic reasons for simpler trial designs than fully adaptive ones.
 - Parallel group, equal allocation.
 - Usually preferred from the point of view of study conduct.
- We still want flexibility in modelling dose-response.
 - Potentially non-monotonic response.
 - Dropping ineffective doses
 - Terminating the study early due to futility.
- Suggested approach for a dose-response trial using a VAS numerical rating scale endpoint.

Model choice

- The NDLM has certain benefits as the doseresponse model in this case:
 - It can easily handle a wide variety of possible dose-response curves, including non-monotonic relationships.
 - The dose-response may not be monotonic due to dropouts influencing change from baseline.
 - It is easily implemented in a Bayesian updating framework.
 - Within this framework it provides direct probabilistic statements about many features of the dose-response.


Study design and simulation

- Study objective is to find dose that gives 1.5pts improvement over placebo.
- Design:
 - 7 active doses + placebo + active comparator.
 - Parallel group
 - Equal allocation to treatments initially.
 - Interim analyses to drop ineffective doses or stop study.
- Study will run to completion as long as at least one dose shows 1.5pts improvement over placebo.


Study design and simulation

- Simulation performed to select criteria for dropping doses / terminating the study.
- When should the interim analyses be carried out?
 - Equally spaced?
 - First interim after 50% of subjects complete?
- Assess Type I error of the procedure.
- Assess the gains in efficiency over a standard parallel group study.
- Investigate across a variety of different simulated dose-response curves.
- NDLM implemented in WinBUGS v1.4 with data handling and manipulation in SAS.

Simulation results - NDLM

 NDLM characterises the underlying dose-response with interval estimates around the model estimates.

- Probability of achieving <1.5pts difference over placebo at each dose.
 - i.e. Probability of futility = P(Futility).
- Drop two lowest doses with P(Futility) >0.8
- Highest doses show some evidence of an effect
 P(Futility)<<0.8

Simulation results – # Interims

Simulation Scenario <i>Power (average n)</i>	0 (No dose response)	1 (Modest improvement)	2 (Clinically important improvement)
0 interims	0 (280)	0.42 (280)	0.83 (280)
1 interim	0 (156)	0.41 (247)	0.84 (265)
2 interims	0 (118)	0.42 (225)	0.81 (256)
3 interims	0 (97)	0.41 (209)	0.83 (249)

- P(At least one dose >1.5pts improvement)
 - If a clinically important effect exists, this is picked up in the study.
- 280 is maximum sample size if study runs to completion.
- Average n shows that if there is little or no effect the average sample size decreases
 - Stopping early, or dropping ineffective doses.

Simulation results – Cost savings

Simulation Scenario	0 (No dose response)	1 (Modest improvement)	2 (Clinically important improvement)
Average total sample size from simulations	118	225	256
Saving in sample size (vs. 280 randomised)	162	55	24
Financial Saving at (\$3K/subject)	\$ 486,000	\$ 165,000	\$ 72,000

- Direct cost savings can be made.
 - Indirect savings are greater: Reduced time to decision, reallocating resource to new candidates.

Conclusions

- A combination of flexible dose-response model and an adaptive design with interim analyses has been shown to be effective in simulations.
 - Good characterisation of the dose-response.
 - Useful inferences about effect at each dose.
- Real cost and resource savings are possible.
- Pragmatic and easily implemented design.
- Direct link between simulation framework (SAS / WinBUGS) and reporting system.
- Can easily be implemented in other projects and indications.