Population Modelling of the Absolute Bioavailability and Pharmacokinetics of Phenobarbitone in Infants with Seizures

Anders Lanner

Uppsala University; Merck Sharpe & Dohme Ltd (Sweden)

Bruce Charles*

School of Pharmacy, Australian Centre for Paediatric Pharmacokinetics, University of Queensland, Brisbane, (Australia)

Xiao (Lucy) Xiaonian

Sino-German Research Institute, Nanchang (PR China)

Tim Donovan

Grantley Stable Neonatal Unit, Royal Women's Hospital, Brisbane (Australia)

Neonatal Seizures

- Seizures arise from an electrophysiological imbalance in brain; Neuro-excitatory activity exceeds neuro-inhibitory activity
- Seizures occur more often in the neonatal period then at any other time in life
- Incidence of 1-2 per 1000 term live births
- Higher risk (6%-13%) in premature infants
- Diagnosis by clinical observation, confirmed in majority of cases by EEG

Neonatal Seizures - Concerns

- Seizures are a neurologic condition requiring immediate medical attention
- Repetitive/prolonged neonatal seizures can increase susceptibility of developing brain to subsequent seizure-induced brain injury in adolescence/adulthood (changed neuronal connectivity, not cell death)
- Overzealous a/c medication may contribute to brain injury in continuing seizures

Neonatal Seizures - Treatment

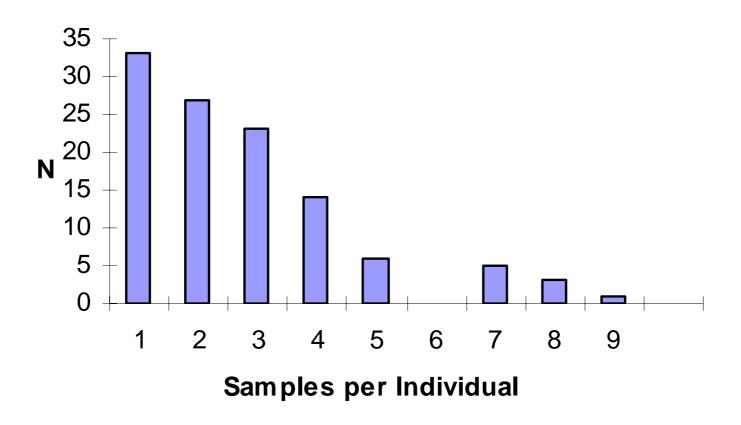
- Phenobarbitone (PB) is a mainstay of treatment; PB doses adjusted to a putative target therapeutic range of 15-25 mg/L
- Low PB levels: Breakthrough seizures;
 Asphyxia during seizures → hypoxemia
- High PB levels: Delay development in otherwise non-seizure children (brain injury 2° to hypoperfusion)
- Weaned of PB after 1-3 months seizure-free

Drug Absorption in Infants, Neonates

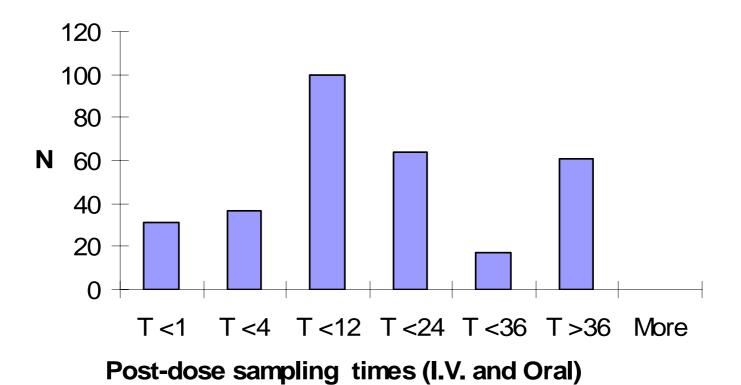
 Infants, neonates – Rate of and extent of drug absorption may vary from older children and adults because of several factors including;

Gastric and duodenal pH
Gastro-intestinal emptying/motility
Pancreatic and bile secretions
Intestinal absorptive surface area
Intestinal mucosal barrier function

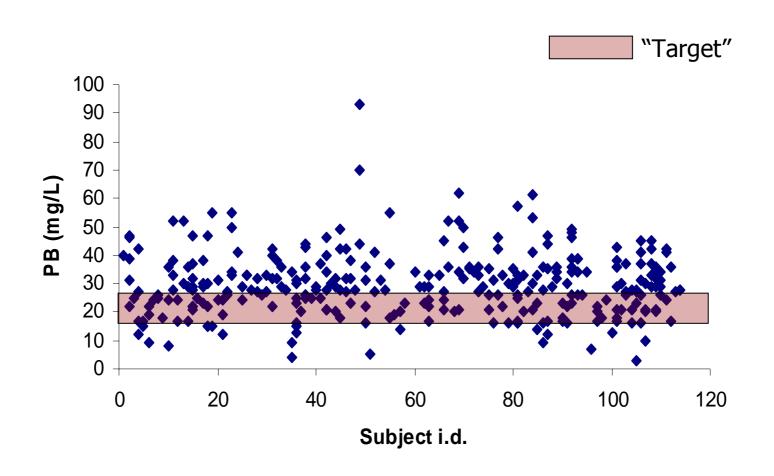
 Very little data on PK of phenobarb in neonates and infants, while bioavailability of PB is unknown


Study Aims

- To determine *clearance, volume of distribution, oral bioavailability* of phenobarbitone in neonates and infants
- Assess the influence of various patient characteristics on the PK typical values
- Estimate the interindividual variability about PK parameters, and the residual variability in the population model


Patient Characteristics

Patients (M, F)	113	(73,40)
Weight (kg)	3	(0.59-5.8)
Gestation age (weeks)	37	(23-42)
Postnatal age (days)	13	(1-108)
Samples (i.v., p.o)	310	(183,127)
Samples per individual	2	(1-9)
PB conc. (mg/L)	30	(3-93)


Samples per Individual

Sample Times – I.V. and Oral

Raw Data

Methods

- Retrospective TDM serum phenobarb data
- NONMEM 5 (v.1.1), G77 compiler
- ADVAN2 TRANS2
- Covariate screening (P=0.01, ΔOFV -6.7)
- FOCE with INTERACTION (η and ε)
- Variability; BLOCK (CL, V, F1)

$$P_{k_j} = P_{k_{TV}}$$
 . $e^{\eta_{j,P_k}}$
 $C_{OBS,ij} = C_{PRED,ij} + \varepsilon_{ij}$

Examples of Covariate Screening

	ΔOFV
<u>Clearance (CL)</u>	
Weight	-50
Age	-18
Gestational age	-10
Sex	194
Infection	5
Weight + Age	-83
<u>Volume (V)</u>	
Weight	-53
Age	14
Infection	470
CL (Weight), V (Weight)	-97 (Final)
CL (Weight + Age), V (Weight)	-141

Population Model

Structural Model

Ka (/h) = 2.0 fixed
CL (L/h) =
$$0.0122 + 0.00328$$
 (Wt-3270)/1000
V (L) = $1.9 + 0.592$ (Wt-3270)/1000
F (%) = 0.61

Derived

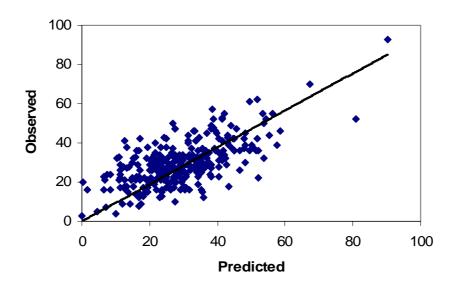
$$t_{1/2}(h) = 108$$

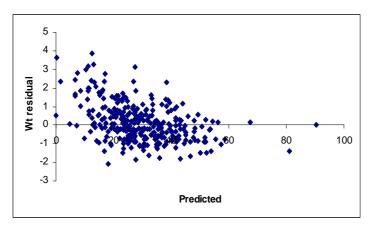
Population Model

Variance Model

Interindividual variability (CV%)

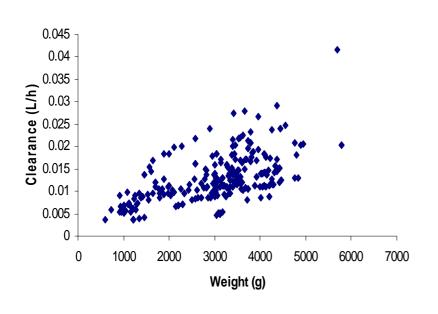
CL 38.0

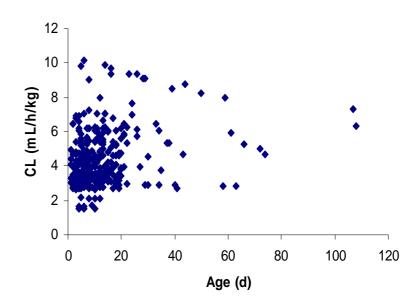

V 33.9


F 33.6

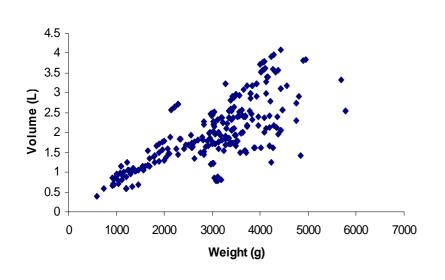
Residual variability (mg/L)

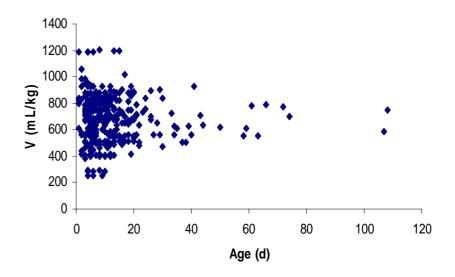
σ 6.0 (40%-20% at 15-30 mg/L)

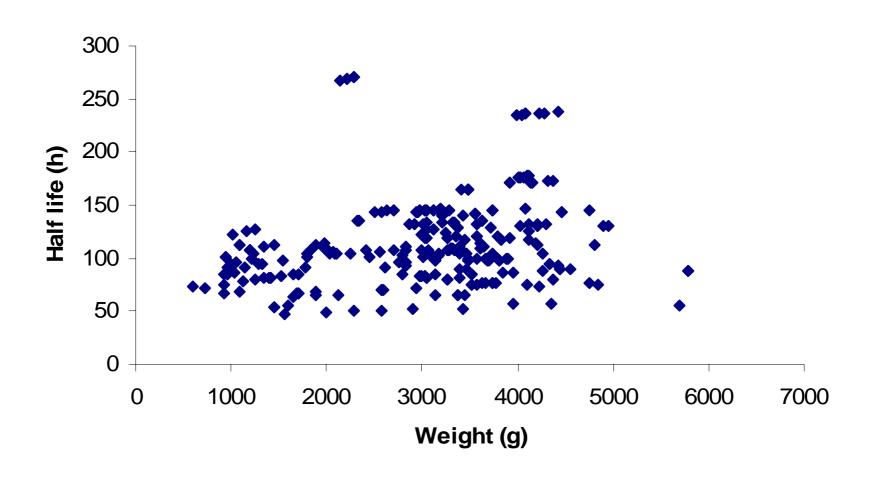

Model Diagnostics



Weight, Age and Clearance


$$CL(L/h) = 0.0122 + 0.00328 \cdot (Wt - 3270)/1000$$




Weight, Age and Volume

$$V(L) = 1.9 + 0.592 \cdot (Wt - 3270)/1000$$



Weight and Half Life

Oral Bioavailability

Phenobarbitone PK – Infant vs Adult

Parameter	Infant*	Adult
Clearance (mL/h/kg)	3.7	3.0 - 4.3
Volume (mL/kg)	581	540 - 700
Half life (h)	108	96 - 100
Bioavailability (%)	61	90 - 100

²⁰

Summary and Conclusions

- CL, V of phenobarbitone increase linearly with weight from birth to 3.5 mo.
- CL per kg, V per kg is constant from birth to 3 mo; CL, V, t_{1/2} similar to adults
- Current practice of LD and MD per kg is OK
- Oral bioavailability is 61%; Implications for switching i.v. <---> p.o.?
- Considerable interindividual variability in PK
- 20%-40% unexplained variability in TR

Some Significant Facts About Australia!

- World's driest continent
- World's shortest Prime Minister
- World's most beautiful women (and men)
- World's best weather, beaches, bla...bla...
 and
- The Australian Centre for Paediatric Pharmacokinetics (ACPP)

ACPP - Mater Children's Hospital, Brisbane

Come down and see us sometime!!

8th World Congress on Clinical Pharmacology & Therapeutics, Brisbane, 1st - 6th August, 2004

7th PAGANZ-PAWS meeting, Brisbane, Feb., 2005