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Aims of analysis

e Introduce stochastic differential equations (SDES) to population

.
» Motivation PK/PD modelling.

Methods

Results e lllustrate the Extended Kalman Filter for parameter estimation in
Conclusions S D ES

e Show implementation of SDEs in NONMEM VI

e Application to PK/PD data of GhRH antagonist degarelix for
tracking of parameters and deconvolution of effect model.
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T e Why use stochastic instead of ordinary differential equations ?
Vethods 0 When auto-correlated residual errors are observed due to
Resuls structural model misspecifications or true physiological
Conclusions Varlatlons
0 Decomposes the residual error into system and measurement
noise.
0 Can be used as a diagnostic tool for model appropriateness.
0 Provides a framework for pinpointing model deficiencies.
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PHARMACEUTICALS O D ES VS S D ES

Introduction

e ODEs vs SDEs

e Extended Kalman Filter

e Visualization of EKF
e Implementation

Results

Conclusions

June 17, 2004

e Ordinary differential equations (ODES)

0 General

0 Example
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PHARMACEUTICALS O D ES VS S D ES

introduction e Stochastic differential equations (SDES)

0 General dA; = g(¢;, A;,d)dt + o, dw;

e Extended Kalman Filter

e vii = F(¢i,Ay)+ey

Results O-chentral

0 Example
Conclusions T CL\[\[\J

Peripheral . Central o Peripheral
compartment Q, compartment Q, compartment

- A Vij=—| As Vs

dA; = — = Al ~ZAs —
1 (V2 2 + 3

(1 C‘Q/j CL + 311 + Q2 A1> dt + 0% gy,
dAy = %Al — %Ag) dt
dAs = (%Al — %Ag) dt
G = e .
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Extended Kalman Filter

introduction e EKF algorithm for parameter estimation in SDEs

e ODEs vs SDEs dAz = g(¢27 A’i7 d) dt + Ow d’LUt B = 9og C = oF
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Extended Kalman Filter
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Introducton  EKF algorithm for parameter estimation in SDEs
e ODESs vs SDEs dAz — g(¢27 A’i7 d) dt + ow d’LUt B = Og C = of
- A i — BA| ,_ 4 — BA| ,_ 4
e Visualization of EKF Yij = f(¢7'7 AZJ) + €ij it A_Ai(jlj—l)
e Implementation
Results
Conclusions
1. Predict the state and covariance
dAgj—1 _ i
—YI=L = g(¢, Aypj_1,d)
dPy:_q
—=% =BP,; 1+ Py; 1BT +o,
2. Predict the observations
Gjilj—1 = F(P, A 1)
. T 2
Rjjj—1 =CPj;1C" +o
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‘Pt|t0 _ PO
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introduction e EKF algorithm for parameter estimation in SDEs

e ODESs vs SDEs dA; = g(qbi, A;, d) dt + o, dw; dg of
Pl As) & e B=3%, . C=g3k
e Visualization of EKF Yij = ¥ Y] (¥

e Implementation

Results

Conclusions

Prediction Measurement Update
1. Predict the state and covariance 1. Calculate the Kalman gain
LS (9 Aggyor ) K;=Pj;1CTR;_,
—dptii_l = BPy;_1+Py;1B' +oy
2. Predict the observations 2. Update the state and covariance
Gjjj—1 = F(& Aj;-1) Ajjj =Aj -1+ K;(y; —9j)5-1)
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introduction e EKF algorithm for parameter estimation in SDEs

e ODESs vs SDEs dA; = g(qbi, A;, d) dt + o, dw; dg of
Pl As) & e B=3%, . C=g3k
e Visualization of EKF Yij = ¥ Y] (¥

e Implementation

Results

Conclusions

Prediction Measurement Update
l.APredict the state and covariance 1. Calculate the Kalman gain

Lﬂf_l =9(6, Ayjj_1,d) K; =P;; _1CTR;; .

dptﬂ_l =BP;;_1 +Py;_1B" +of,

2. Predict the observations 2. Update the state and covariance
gjlj—1 = F(& Aj;-1) Ajjj=Aj1+ K;(y; —9j5-1)
Rjjj_1 = CPjj;_1C" + o7 Pjjj = Pjjj—1 — KjRj; 1 K]

|
At|t0 Ag
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Visualization of Extended Kalman Filter

Introduction

e ODEs vs SDEs
e Extended Kalman Filter

e Visualization of EKF

e Implementation

Results

Conclusions
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Implementation in NONMEM VI

e Control stream modifications

Introduction

$PK ; Update equations

« Extended Kaiman Fifer CL =THETA(1)*EXP(ETA(L))

V = THETAQQ)*EXP(ETA(2))

K =AQ)/(V*R) K;  =PF;10TR;;_,

A(1) = A(2) + K*(DV - A(LIV) Al = Aji—1 KW —yg15-1)
A(2) = A(2) - K*R*K i Pjlg = Pjj—1 — KR 1 K

$DES ; State prediction equations
DADT(1) = -CL/V*A(L) ; dAy;_1/dt = g(, Agjj-1,d)
DADT(2) = -2*CLIV*A(2)+SGW*SGW; dP;|j_1/dt = BPy;_1 + Py ;1 B" + o2,

$ERROR ; Output prediction equations N i
IPRED = A(L)/V U551 = F(ds Ajpi-1)

5 2 - . T 2
R = A(2)/(V*V)+SIG*SIG i1 = CP); 107 +o
W = SQRT(R)
Y = IPRED + W*EPS(1)
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Introduction

e ODEs vs SDEs
e Extended Kalman Filter
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e Implementation

Results
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e Data file modifications

ID HOUR TIME DV EVID MDV AMT CMT

Explanation:

1 -2 0
1 0 2
1 0 2 122
1 0 2
1 0 2
1 2 4 10.6
1 2 4
1 2 4
1 4 6 8.93
1 4 6
1 4 6

o

W N O W N O W N O P

=

P B O K P O KRB B O Bk

100

o

I e T T e T e T e T o T T =

i, €V Oy dt

IV bolus dose

o —

One-step prediction
Store A(-) from $PK
Reset and update A(-)
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Material and methods

Intoduction e PK/PD modelling of GnRH antagonist degarelix

Methods

0 Degarelix IV infusion phase | study with 24 subjects

Results

0 Sequential PK/PD data analysis
« Pharmacodynamic model 0 FOCE method with INTERACTION

e Pinpointing model deficiencies

Conclusions

et

Peripheral > Central > Peripheral
compartment Q : compartment Q2 compartment

A, V, || AV = AV

|

' %

L (A/V)

| Y

L ICY (A /V)

|

\

Pool | Testosterone k .
K. — s | compartment _e> compartment L
m
P T
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Pharmacokinetic model

(Ol

invoductor e PK parameter estimates T LS
e Peripheral N Central e Peripheral
compartment | (@, | compartment | (@, | compartment
A, V, |=—| A, V, |=—| Ay V5
« Pinpointing model deficiencies
Conclusions Parameter ODE SDE  Relative diff.

OFV —714 —721

CL 3.29 3.32 0%

Q1 2.57 2.63 2%

Q> 10.7 11.0 3%

V1 9.78 9.69 1%

Vs 31.7 30.4 4%

V3 8.87 8.70 2%

IV CL 17.6 17.6 0%

1V Q1 30.8 32.7 6%

1V V1 27.7 27.8 0%

Oprop 19.8 18.8 5%

g Central 208
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Pharmacokinetic model

PHARMACEUTICALS

b e PK concentration-time profiles
Methods
T Observations 000 SDE ODE
e Material and methods
o 1 2 3 4 0o 1 2 3 4
e Pharmacod . del | | | | 11 | | | 1 1 | | | 11 | | | |
ynamic mode
e Pinpointing model deficiencies
Conclusions - 100
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Pharmacodynamic model

Introduction

Methods

Results
e Material and methods
e Pharmacokinetic model

e Pharmacodynamic model

e Pinpointing model deficiencies

Conclusions
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| max (AL/VL)Y

e PD parameter estimates

1Y+ (A V)Y ?fj@
Pool kv Testosterone k
Kin—> compartment —re|> compartment _OUt>
P T
Parameter ODE SDE Relative diff.
OFV —565 —643
Kout 0.22 0.21 3%
Krel 0.0024 0.0035 46%
e 0.95 0.87 9%
1Cs0 0.59 0.40 33%
~ 3.00 1.68 44%
[V kout 18.7 5.93 68%
IV 1Csg 54.6 32.6 40%
O prop 23.9 3.69 85%
ol 0.726

Stochastic Differential Equations in NONMEM - p. 11/17

- TRy



PHARMACEUTICALS

Pharmacodynamic model

Introduction

Methods

Results
e Material and methods
e Pharmacokinetic model

e Pharmacodynamic model

e Pinpointing model deficiencies

Conclusions

June 17, 2004

e PD concentration-time profiles
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Pinpointing model deficiencies

inrodcion « Hypothalamic-Pituitary-Gonadal (HPG) axis
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Hetods 0 Residual error is decomposed into system and measurement

Resuts noise.

0 SDE model reduces to ODE model if the system noise is
Insignificant.

0 Provide a diagnostic tool for pinpointing model deficiencies.

 PK/PD of GnRH antagonist degarelix
0 Significant system noise parameters in PK/PD model
- PK: Random physiological fluctuations
- PD: Model misspecification

0 Pinpoint PD model deficiencies
- Tracking of K;, parameter
- Deconvolution of effect model

June 17, 2004 Stochastic Differential Equations in NONMEM - p. 16/17
- TRy



PHARMACEUTICALS

Introduction

Methods
Results
| | 7
Questions “
June 17, 2004 Stochastic Differential Equations in NONMEM - p. 17/17

- TRy



	Introduction
	Aims of analysis
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation


	Methods
	ODEs vs SDEs
	ODEs vs SDEs

	Extended Kalman Filter
	Extended Kalman Filter
	Extended Kalman Filter
	Extended Kalman Filter

	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter
	Visualization of Extended Kalman Filter

	Implementation in NONMEM VI
	Implementation in NONMEM VI


	Results
	Material and methods
	Pharmacokinetic model
	Pharmacokinetic model
	Pharmacodynamic model
	Pharmacodynamic model
	Pinpointing model deficiencies
	Pinpoint PD model deficiencies
	Pinpoint PD model deficiencies

	Pinpoint PD model deficiencies
	Pinpoint PD model deficiencies
	Pinpoint PD model deficiencies
	Pinpoint PD model deficiencies


	Conclusions
	Conclusions
	Conclusions

	


