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Aims of analysis

● Introduce stochastic differential equations (SDEs) to population
PK/PD modelling.

● Illustrate the Extended Kalman Filter for parameter estimation in
SDEs

● Show implementation of SDEs in NONMEM VI

● Application to PK/PD data of GnRH antagonist degarelix for
tracking of parameters and deconvolution of effect model.
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Motivation

● Why use stochastic instead of ordinary differential equations ?

◆ When auto-correlated residual errors are observed due to
structural model misspecifications or true physiological
variations.

◆ Decomposes the residual error into system and measurement
noise.

◆ Can be used as a diagnostic tool for model appropriateness.

◆ Provides a framework for pinpointing model deficiencies.
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ODEs vs SDEs

● Ordinary differential equations (ODEs)
◆ General dAi/dt = g(φi, Ai, d)

yij = f(φi, Aij) + ǫij

◆ Example
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ODEs vs SDEs

● Stochastic differential equations (SDEs)
◆ General dAi = g(φi, Ai, d) dt + σw dwt

yij = f(φi, Aij) + eij

◆ Example
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Extended Kalman Filter

● EKF algorithm for parameter estimation in SDEs

dAi = g(φi, Ai, d) dt + σw dwt

yij = f(φi, Aij) + eij

B = ∂g
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Ât|t0 = A0
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Prediction

1. Predict the state and covariance

2. Predict the observations
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Measurement UpdatePrediction
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dÂt|j−1
dt

= g(φ, Ât|j−1, d)

Pt|t0 = P0
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= g(φ, Ât|j−1, d)

Pt|t0 = P0
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Visualization of Extended Kalman Filter
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Ât|t0 = D

0

2

4

6

8

10

12

0 5 10 15 20

Predict

Time since drug administration (hr)

C
on

ce
nt

ra
tio

n 
(n

g/
m

L)

0

2

4

6

8

10

12

0 5 10 15 20

Measure

Time since drug administration (hr)

C
on

ce
nt

ra
tio

n 
(n

g/
m

L)

One-step predictions
Measurements
EKF updates
Prediction interval



Introduction

Methods

● ODEs vs SDEs

● Extended Kalman Filter

● Visualization of EKF

● Implementation

Results

Conclusions

June 17, 2004 Stochastic Differential Equations in NONMEM - p. 6/17

Visualization of Extended Kalman Filter

Measurement UpdatePrediction

Update

Pt|t0 = P0
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Visualization of Extended Kalman Filter
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Implementation in NONMEM VI

● Control stream modifications

$PK ; Update equations
CL = THETA(1)*EXP(ETA(1))
V = THETA(2)*EXP(ETA(2))
K = A(2)/(V*R)
A(1) = A(1) + K*(DV - A(1)/V)
A(2) = A(2) - K*R*K

$DES ; State prediction equations
DADT(1) = -CL/V*A(1)
DADT(2) = -2*CL/V*A(2)+SGW*SGW

$ERROR ; Output prediction equations
IPRED = A(1)/V
R = A(2)/(V*V)+SIG*SIG
W = SQRT(R)
Y = IPRED + W*EPS(1)

; Kj = Pj|j−1CT R−1
j|j−1

; Aj|j = Aj|j−1 + Kj(yj − yj|j−1)

; Pj|j = Pj|j−1 − KjRj|j−1KT
j

; dAt|j−1/dt = g(φ, At|j−1, d)

; dPt|j−1/dt = BPt|j−1 + Pt|j−1BT + σ2
w

; ŷj|j−1 = f(φ, Âj|j−1)

; Rj|j−1 = CPj|j−1CT + σ2
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Implementation in NONMEM VI

● Data file modifications

ID HOUR TIME DV EVID MDV AMT CMT

1 -2 0 . 0 1 . 1

1 0 2 . 1 1 100 1

1 0 2 12.2 0 0 . 1

1 0 2 . 2 1 . 1

1 0 2 . 3 1 . 1

1 2 4 10.6 0 0 . 1

1 2 4 . 2 1 . 1

1 2 4 . 3 1 . 1

1 4 6 8.93 0 0 . 1

1 4 6 . 2 1 . 1

1 4 6 . 3 1 . 1
...

...
...

...
...

...
...

...

P0 =
∫ t2

t1
e−2 CL

V
tσ2

w dt

IV bolus dose

One-step prediction

Store A(·) from $PK

Reset and update A(·)

Explanation:
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Material and methods

● PK/PD modelling of GnRH antagonist degarelix

◆ Degarelix IV infusion phase I study with 24 subjects
◆ Sequential PK/PD data analysis
◆ FOCE method with INTERACTION

compartmentKin
compartment

Pool

compartment

Peripheral

compartment

CentralPeripheral

compartment

+

AAA

krel

312 V

Imax

Testosterone

TP

outk

γ γ
)/V1A1(

γ
)/V1A1(

CL

Q2Q1

50IC

V V32 1
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Pharmacokinetic model

● PK parameter estimates

VV
Q 2Q

CL

2 3A A
compartment

Peripheral Peripheral
compartment

1

wσCentral

2 3V1A 1

Central
compartment

Parameter ODE SDE Relative diff.

OFV −714 −721

CL 3.29 3.32 0%

Q1 2.57 2.63 2%

Q2 10.7 11.0 3%

V1 9.78 9.69 1%

V2 31.7 30.4 4%

V3 8.87 8.70 2%

IIV CL 17.6 17.6 0%

IIV Q1 30.8 32.7 6%

IIV V1 27.7 27.8 0%

σprop 19.8 18.8 5%

σCentral
w 2.08
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Pharmacokinetic model

● PK concentration-time profiles
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Pharmacodynamic model

● PD parameter estimates

relkPool
compartment

inK
kout

P

T
wσ( 1A 1V/ )γ

( 1A 1V
+

Imax
γ
50IC

γ)/

T

Testosterone
compartment

Parameter ODE SDE Relative diff.

OFV −565 −643

kout 0.22 0.21 3%

krel 0.0024 0.0035 46%

Imax 0.95 0.87 9%

IC50 0.59 0.40 33%

γ 3.00 1.68 44%

IIV kout 18.7 5.93 68%

IIV IC50 54.6 32.6 40%

σprop 23.9 3.69 85%

σT
w 0.726
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Pharmacodynamic model

● PD concentration-time profiles
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Pinpointing model deficiencies

● Hypothalamic-Pituitary-Gonadal (HPG) axis

◆ Variations in testosterone production

◆ HPG mechanisms of action
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Pinpoint PD model deficiencies

● Variations in testosterone production
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Pinpoint PD model deficiencies

● Variations in testosterone production
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Pinpoint PD model deficiencies

● HPG mechanisms of action
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Pinpoint PD model deficiencies
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Pinpoint PD model deficiencies
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Pinpoint PD model deficiencies

● GAM (Effect ∼ s(log Cp) + s(log LH) )
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Conclusions

● Stochastic differential equations
◆ Residual error is decomposed into system and measurement

noise.
◆ SDE model reduces to ODE model if the system noise is

insignificant.
◆ Provide a diagnostic tool for pinpointing model deficiencies.
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Conclusions

● Stochastic differential equations
◆ Residual error is decomposed into system and measurement

noise.
◆ SDE model reduces to ODE model if the system noise is

insignificant.
◆ Provide a diagnostic tool for pinpointing model deficiencies.

● PK/PD of GnRH antagonist degarelix
◆ Significant system noise parameters in PK/PD model

- PK: Random physiological fluctuations

- PD: Model misspecification

◆ Pinpoint PD model deficiencies

- Tracking of Kin parameter

- Deconvolution of effect model
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Questions ?
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