

Esmolol Population Pharmacokinetics in Critically-ill, Pediatric Patients

JS Barrett (1,4), A Zuppa (1,3), M Schreiner (4) and PC Adamson (1, 2, 4)

(1) Division of Clinical Pharmacology; (2) Division of Oncology; (3) Division of Critical Care Medicine, The Children's Hospital of Philadelphia, (4) Children's Clinical Research Institute, Philadelphia, PA USA

BACKGROUND

INTRODUCTION

Esmolol Chemical Structure:

Basic Pharmacology

- β₁-selective antagonist
- · very short duration of action
- · administered for beta blockade of short duration

Adult Clinical Pharmacology

- · Rapid control of ventricular rate in atrial fibrillation/flutter
- · Noncompensatory sinus tachycardia
- Initial loading dose of 500 µg/kg
- Maintenance infusion of 50 200 ug/kg/min
- · Ester linkage hydrolyzed rapidly by erythrocyte esterases
- free acid metabolite and methanol
- No CYP dependent metabolism
- 1 NO C 11 dependent metabol
- t_{1/2}α ~ 2 min; t_{1/2}β ~ 9 min
 Apparent Vd ~ 2 L/kg
- · Clearance 128-250 ml/kg/min
- · Free acid metabolite
- 1/1500th the activity of esmolol; $t_{1/2}\beta \sim 3.7$ h; excreted in the urine

Assumptions for Dosing Pediatric Population

- · No data to suggest that red cell esterase activity in children is different
- Studies in children suggest a more rapid clearance or terminal elimination of drug relative to adults

Pediatric Trials with Esmolol

- ETHIC:Infants and Children Undergoing Treatment of Hypertension in After Surgical Repair of Coarctation of the Aorta
- · ESCAPE: Pediatric Patients with Supraventricular Tachycardia
- · Neither study designed for pop-PK
- Clinical settings different (OR vs Cath Lab) as well as clinical conduct
- · ETHIC patients anesthetized

Demographic Characteristics

	ETHIC	ESCAPE	COMBINED
Age	30 newborns: ≤28 days	14 child: ≥ 2 to 11y	30 newborns
	41 infants: >28 d to <1y	13 adol:12-16yr	41 infants
	72 child: ≥1y to 6y		97 child/adolesc
Weight(kg)	newborns: 3.6 (0.4)	48.9 (23.6)	23.2 (22)
	infants: 5.8 (1.9)		
	child: 34.3 (20)		
Race	hispanic: 25 (17%)	non-Hispanic	
	black: 9 (6%)	white: 30 (88%)	
	white: 107 (75%)	non-Hispanic	
	other: 2 (2%)	black: 4 (12%)	
Gender	♀: 50 (35%)	♀: 11 (41%)	♀: 61 (36%)
	♂: 93 (65%)	♂: 16 (59%)	ී: 109 (64%)

Pediatric Trials with Esmolol

	ETHIC	ESCAPE
Number	107	22
Dose (bolus)	125, 250, or 500 μg/kg	1000 μg/kg push
Dose (infusion)µg/kg/min	125, 250, 500	15-min infusion at 300
PK sampling	0, 5, 10, and 15 min after the start of CIVI	0, 5, 10, and 15 min after load and 3, 6, 9, 12, 15 and 20 min after CIVI
Initial PK Analysis	Empirical pop. model $C(t) = Css * (1 - e^{-\alpha t})$	NCA 2CPM (WINSAAM)
Vd (mL/kg)	ND	283 (145); [131–732]
t 1/2β (min)	4.8	6.9 [5.2-10.9]
Clearance (mL/kg/min)	Infants: 281 (267,296) Children: 126 (83, 169)	119 (51); [25-237]

OBJECTIVES

- To describe esmolol pharmacokinetics in pediatric patients via population-PK modeling
- To identify covariate, demographic and clinical factors that are important predictors of variability in esmolol PK parameters

DESIGN / METHODS

- Combined data set contained 552 observations and included 4 dosing regimens (loading doses of 125, 250, 500 and 1000 µg /kg over 10 - 20 seconds and maintenance infusions of 125, 250, 300 and 500 µg /kg/min over 15 min)
- PK database was analyzed using nonlinear mixed-effects modeling with the NONMEM software, Version V, Level 1.1 (FO and FOCE Methods)
- The underlying structural model was a two compartment open model with two consecutive zero-order staged infusions as input

RESULTS

Final Model, Combined Dataset

Relevant Model Runs

Model Description	MOFV	ΔOFV
Base: 2 CPM	-7951.3	NA
2CPM; fixed allometric on CL	-7275.5	-675.8
2CPM; fixed allometric on CL and V	-7321.2	-630.1
2CPM; fixed allometric on CL; CL~RACE	-7275.1	-0.4
2CPM; fixed allometric on CL; CL~SEX	-7274.2	-1.1
2 CPM; fixed allometric on CL; CL~AGE	-7265.4	-10.1

RESULTS (continued)

Final Mode	el		
Parameter		Estimate	%RSE
CL (L/hr)	θ_{CL}	10.2	14.3
	$\theta_{CL\sim AGE}$	0.1	60.4
V(L)	$\theta_{ m V}$	9.96	15.3
Q (L/hr)	$\theta_{ m Q}$	0.78	56.8
V2 (L)	θ_{V2}	7.84	19.9
Inter-indiv	idual Variance		
	ω^2_{CL}	4.54	49.6
	ω^2_{V}	0.42	136.9
	ω_{0}^{2}	1.57	319.7
	ω^2_{V2}	1.81	219.9
Residual V	ariance		
	σ^2_{Add}	290.0	82.1

- 3 subjects were influential to model prediction
- Mixture models improved prediction and residual error but were not meaningful from the standpoint of individual patient guidance

0.59

30.8

CONCLUSIONS

- The pediatric population PK model provided a robust description of esmolol PK across a wide range of ages (0.01 – 16.7 years) and body weights (2.6 – 114.1 kg).
- While 3 patients were found to influence model outcomes, there
 were no compelling reasons to remove them from the analysis.
 Model predictions were consistent with a linear, time-independent
 system
- Newborns and infants appear to clear esmolol faster than children greater than 1 year of age. Clearance in children greater than 1 year of age is similar to that observed in adults.

REFERENCES

- Zuppa, A.F., H. Shi, and P.C. Adamson. Liquid chromatography-electrospray mass spectrometry (LC-MS) method for determination of esmolol concentration in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2003. 796(2): p. 293-301.
- Angaran, D.M., N.J. Schultz, and V.H. Tschida, Esmolol hydrochloride: an ultrashort-acting,
- beta-adrenergic blocking agent. Clin Pharm, 1986. 5(4): p. 288-303.
 Cuneo BF, Zales VR, Blahunka PC, Benson DW. Pharmacodynamics and pharmacokinetics of
- esmolol, a short-acting, beta-blocking agent, in children. Pediatr Cardiol 15(6): 296-301, 1994.

 Wiest DB, Trippel DL, Gillette PC, Garner SS. Pharmacokinetics of esmolol in children. Clin
- Pharmacol Ther 49(6): 618-23.1991