

Non-linear mixed effects modelling using the SAS system - An overview

17 June 2004 Al Maloney

What this talk hopes to show...

Fitting non-linear mixed effect models in SAS using the NLMIXED procedure.

- Background
- The syntax defining the model
- The options defining the criteria for fitting the model
- Strengths and Limitations
- Summary
- (If time, a very brief example using NLMIXED adaptive design)

This outline is based on the SAS online documentation!

A brief note on the nomenclature used

General term NM term

Fixed effects Thetas

Random effects Etas

Var-Cov of random effects Omega

SAS seem to have incorporated the current 'best' knowledge on NL mixed models methods

Built on work from a number of 'different' fields including:

Beal, Sheiner... Mixed models in PK / PK-PD

Goldstein...
 Hierarchical mixed models

Longford, Diggle... Generalised linear mixed models

Lindstrom, Bates, Pinheiro... General applied mixed models

Davidian, Giltinan... Heteroscedastistic/NP mixed models

. . . .

+ SAS's own knowledge as well!

This has been 'packaged' in a new SAS procedure - PROC NLMIXED

PROC NLMIXED has a number of program statements which can be used

The following statements can be used with the NLMIXED procedure:

PROC NLMIXED options procedure call and options

ARRAY array specification

PARMS parameters and starting values

BOUNDS boundary constraints

BY variables

CONTRAST 'label' expression

ID expressions

MODEL model specification

RANDOM random effects specification

PREDICT expression

ESTIMATE 'label' expression

ODS output control

REPLICATE replicate variable

Program statements usual SAS programming statements

Run;

This talk will focus on the main statements

The most important statements are:

PROC NLMIXED options

ARRAY

PARMS

BOUNDS

BY

CONTRAST

ID

MODEL

RANDOM

PREDICT

ESTIMATE

ODS

REPLICATE

Program statements

Run;

procedure call and options

array specification

parameters and starting values

boundary constraints

variables

'label' expression

expressions

model specification

random effects specification

expression

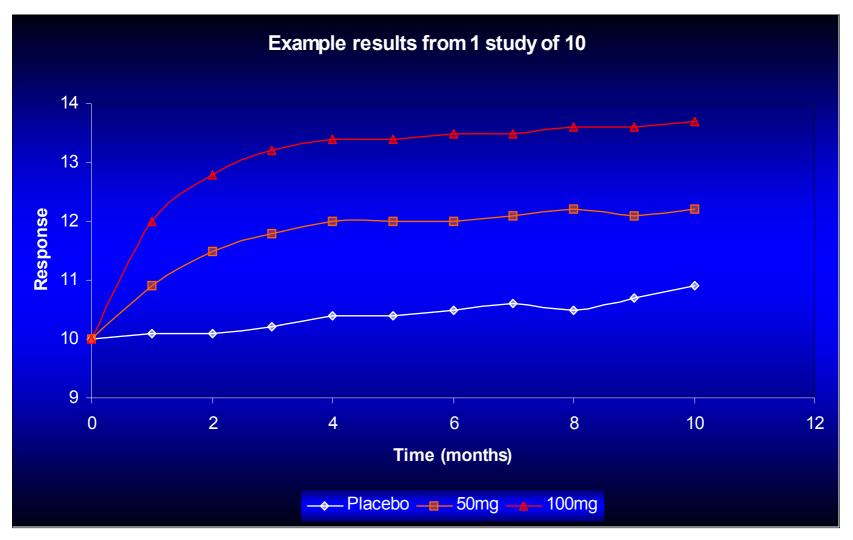
'label' expression

output control

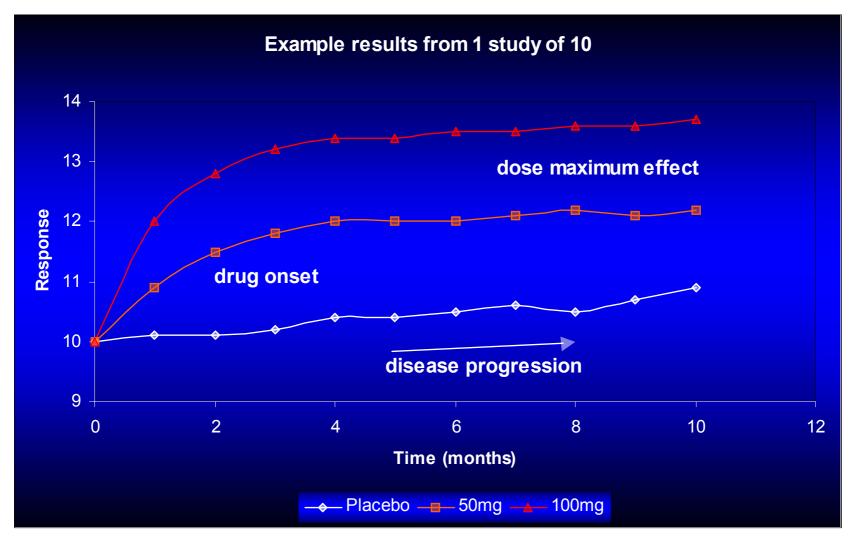
replicate variable

usual SAS programming statements

To help interpret the programming statements, consider some artificial data



To help interpret the programming statements, consider some artificial data



The dataset to be used in the NLMIXED procedure has the relevant data

```
Data PAGE;
Input Study Drug Dose Time Observed
          A 50 0
                            10.0
           A 50 1
                            10.9
           В
                            10.0
                     0
```

10 Studies (random effect level)

3 Drugs ("A" "B" and "C")

For this artificial drug disease model, the SAS code might look like:

options

```
proc nlmixed data=page cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar = 1 b2var 1 s2= 1;
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                   drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                   delay
   pred
              = disease*(1+drug eff*drug delay);
                                                                   response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

For this artificial drug disease model, the SAS code might look like:

options

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar = 1 b2var 1 s2= 1;
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                  drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                  delay
   pred
              = disease* (1+drug eff*drug delay);
                                                                   response
```

```
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0],[b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The "PARMS" statement defines starting points or initial grid search for each parameter

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar = 1 b2var 1 s2= 1;
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                   drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                   delay
              = disease*(1+drug eff*drug delay);
   pred
                                                                   response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The "PARMS" statement defines starting points or initial grid search for each parameter

The "PARMS" statement gives initial estimates for the model parameters. You can also give a range of potential values. SAS will perform the grid search, and start the optimisation at the best combination.

Example:

```
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5
slope = 1 to 5 by 1 blvar=1 b2var=1 s2= 1 RATE = 0.5;
```

- Note the use of "TO" and "BY".
- Can use this to simply plot the likelihood function (no fitting).
- Can read in previous model fit parameters.

The "BOUNDS" and "BY" statements do exactly what you would expect.

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar =1 b2var 1 s2= 1:
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                   drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                   delay
   pred
              = disease* (1+drug eff*drug delay);
                                                                   response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The "BOUNDS" and "BY" statements do exactly what you would expect.

The "BOUNDS" statement

 Limits on any parameters (although should generally be avoided with model reparameterisation and/or reduction).

Example:

```
bounds RATE>0;
```

The "BY" statement

Useful for repeated model fitting (e.g. bootstrap samples)

Example:

```
by boot_sample;
```

The "MODEL" statement allows a wide variety of models, including defining your own log likelihood

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar = 1 b2var 1 s2= 1:
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                   drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                   delay
              = disease*(1+drug eff*drug_delay);
   pred
                                                                   response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The "MODEL" statement allows a wide variety of models, including defining your own log likelihood

The "MODEL" statement defines the type of likelihood function.

Valid distributions are as follows.

- normal(m, v) specifies a normal distribution with mean m and variance v.
- binary(p) specifies a binary (Bernouilli) distribution with probability p.
- binomial(n,p) specifies a binomial distribution with count n and probability p.
- *poisson(m)* specifies a Poisson distribution with mean *m*.
- general(II) specifies a general log likelihood function that you define.

Examples

```
model observed ~ normal(pred, s2);
```

or equivalently

```
11=-.5*log(2*3.14159265358979*s2)-(.5/s2)*(y-pred)**2;
model y~general(ll);
```

The "RANDOM" statement defined the variance covariance matrix of random effects

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
       RATE = 0.5 blvar = 1 b2var 1 s2= 1;
bounds RATE>0;
    Disease = 10 + 0.1*(SLOPE+b11)*time;
                                                                    disease
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then \text{LED50=LED50} C;
                                                                    drug
    drug eff = (EMAX + b22) * dose / (exp(LED50) + dose);
    drug delay = 1-exp(-RATE*time);
                                                                    delay
               = disease*(1+drug eff*drug_delay);
   pred
                                                                    response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The "RANDOM" statement defined the variance covariance matrix of random effects

Define (lower) diagonal and off-diagonal random elements that need to be estimated.

e.g. Simple two random effects, no correlation

$$\begin{bmatrix}
 \Omega^{11} & 0 \\
 0 & \Omega^{22}
 \end{bmatrix}$$

```
random b11 b22 ~ normal([0,0],[b11var, 0, b22var]) subject=study out =checkran1;
```

e.g.
$$\begin{pmatrix} \Omega^{11} & \Omega^{12} & \Omega^{13} & 0 \\ \Omega^{12} & \Omega^{22} & \Omega^{23} & \Omega^{24} \\ \Omega^{13} & \Omega^{23} & \Omega^{33} & 0 \\ 0 & \Omega^{24} & 0 & \Omega^{44} \end{pmatrix}$$

```
random b1 b2 b3 b4 ~ normal([0,0,0,0],[\Omega11,\Omega12,\Omega22,\Omega13,\Omega23,\Omega33,0,\Omega24,0,\Omega44]) subject=study;
```

The "RANDOM" statement defined the variance covariance matrix of random effects

Define (lower) diagonal and off-diagonal random elements that need to be estimated.

e.g. Simple two random effects, no correlation

$$\begin{bmatrix}
\Omega^{11} & 0 \\
0 & \Omega^{22}
\end{bmatrix}$$

```
random b11 b22 ~ normal([0,0],[b11var, 0, b22var]) subject=study out =checkran1
```

e.g.
$$\begin{pmatrix} \Omega^{11} & \Omega^{12} & \Omega^{13} & 0 \\ \Omega^{12} & \Omega^{22} & \Omega^{23} & \Omega^{24} \\ \Omega^{13} & \Omega^{23} & \Omega^{33} & 0 \\ 0 & \Omega^{24} & 0 & \Omega^{44} \end{pmatrix}$$

random b1 b2 b3 b4 ~ normal([0,0,0,0],[Ω 11, Ω 12, Ω 22, Ω 13, Ω 23, Ω 33,0, Ω 24,0, Ω 44]) subject=study;

The Output Deliver System (ODS) in SAS allows any output to be available later

```
proc nlmixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
      RATE = 0.5 blvar = 1 b2var 1 s2= 1;
bounds RATE>0;
                                                                   disease
    Disease = 10 + 0.1*(SLOPE+b11)*time;
    if drug = "A" then LED50=LED50 A;
    if drug = "B" then LED50=LED50 B;
    if drug = "C" then LED50=LED50 C;
                                                                   drug
    drug eff = (EMAX+b22) * dose / (exp(LED50)+dose);
    drug delay = 1-\exp(-RATE*time);
                                                                   delay
   pred
              = disease* (1+drug eff*drug delay);
                                                                   response
model observed ~ normal(pred, s2);
random b11 b22 ~ normal([0,0], [b11var, 0, b22var]) subject=study out =checkran1;
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
run;
```

The Output Deliver System (ODS) in SAS allows any output to be available later

Any output that is can be written to the results file can also be saved to a dataset for subsequent manipulation. This includes:

- Parameter estimates
- Fit statistics
- Model specification
- Covariance matrix
- Correlation matrix
- Convergence status
- etc.

e.g.

```
ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;
```

Some additional nice features

Most SAS programming statements (e.g. "If..Then") are supported.

```
if drug = "A" then LED50=LED50_A;
if drug = "B" then LED50=LED50_B;
if drug = "C" then LED50=LED50_C;
```

Using previous model parameters (reading in the last fit)

Options in the model fitting

Where SAS shows it's strength, and the complexities of fitting these models!

Some of the main options are:

Basic Options

DATA=input data set METHOD=integration method

Displayed Output Specifications

START=gradient at starting values

HESS=Hessian matrix

ITDETAILS =iteration details

CORR=correlation matrix

COV=covariance matrix

ECORR=corr matrix of additional estimates

ECOV=cov matrix of additional estimates

EDER=derivatives of additional estimates

ALPHA==alpha for confidence limits

DF=degrees of freedom for *p* values and confidence limits

Derivatives Specifications

FD[=]finite-difference derivatives FDHESSIAN[=]finite-difference second derivatives DIAHES=use only diagonal of Hessian

Optimisation Specifications

TECHNIQUE=minimization technique

UPDATE=update technique

LINESEARCH=line-search method

LSPRECISION=line-search precision

HESCAL=type of Hessian scaling

INHESSIAN=start for approximated Hessian

RESTART=iteration number for update restart

OPTCHECK[=]check optimality in neighbourhood

Termination Criteria Specifications

MAXFUNC=maximum number of function calls

MAXITER=maximum number of iterations

MINITER=minimum number of iterations

MAXTIME=upper limit seconds of CPU time

ABSCONV=absolute function convergence criterion

ABSFCONV=absolute function convergence criterion

ABSGCONV=absolute gradient convergence criterion

ABSXCONV=absolute parameter convergence criterion

FCONV=relative function convergence criterion

FCONV2=relative function convergence criterion

GCONV=relative gradient convergence criterion

VOONV - relative gradient convergence chienon

XCONV=relative parameter convergence criterion

FDIGITS=number accurate digits in objective function

FSIZE=used in FCONV, GCONV criterion

XSIZE=used in XCONV criterion

Additional refinement and debugging of the model fitting can be achieved with other options

Quadrature Options

NOAD=no adaptive centring
NOADSCALE=no adaptive scaling
OUTQ=output data set
QFAC=search factor
QMAX=maximum points
QPOINTS=number of points
QSCALEFAC=scale factor
QTOL=tolerance

Debugging Output

LIST=model program, variables
LISTCODE=compiled model program
LISTDEP=model dependency listing
LISTDER=model derivative
XREF=model cross reference
FLOW=model execution messages
TRACE=detailed model execution messages

Singularity Tolerances

SINGCHOL=tolerance for Cholesky roots SINGHESS=tolerance for Hessian SINGSWEEP=tolerance for sweep SINGVAR=tolerance for variances

Empirical Bayes Options

EBSTEPS=number of Newton steps
EBSUBSTEPS=number of sub steps
EBSSFRAC=step-shortening fraction
EBSSTOL=step-shortening tolerance
EBTOL=convergence tolerance
EBOPT= comprehensive optimisation
EBZSTART=zero starting values

Step Length Specifications

DAMPSTEP[=]damped steps in line search MAXSTEP=maximum trust-region radius INSTEP=initial trust-region radius

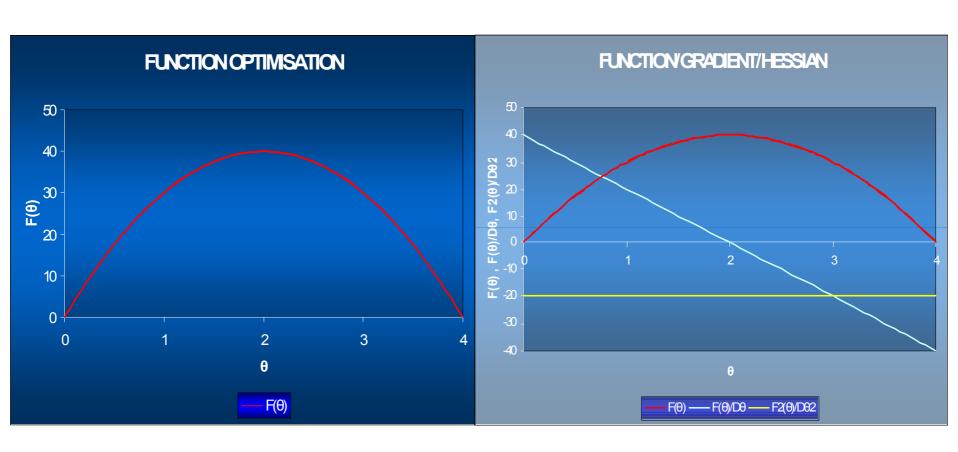
Covariance Matrix Tolerances

ASINGULAR=absolute singularity for inertia MSINGULAR=relative M singularity for inertia VSINGULAR=relative V singularity for inertia G4=threshold for Moore-Penrose inverse COVSING=tolerance for singular COV matrix CFACTOR=multiplication factor for COV matrix

Constraint Specifications

LCEPSILON=range for active constraints LCDEACT=LM tolerance for deactivating LCSINGULAR=tolerance for dependent constraints

A brief reminder of function optimisation and gradient/hessian terms



Optimisation Algorithms

7 function optimisation methods		Needs	
		Gradient	Hessian
quasi-Newton (DBFGS, DDFP, BFGS, DFP)	QUANEW *	Yes	No
trust region	TRUREG	Yes	Yes
Newton-Raphson with line search	NEWRAP	Yes	Yes
Newton-Raphson with ridging	NRRIDG	Yes	Yes
double-dogleg (DBFGS, DDFP)	DBLDOG	Yes	No
conjugate gradient (PB, FR, PR, CD)	CONGRA	Yes	No
Nelder-Mead method	NMSIMP	No	No

^{*}default

Finite difference approximations of derivatives - forward or central?

SAS uses numerical approximations for derivatives.

Gradient - first order derivatives - rate of change of function

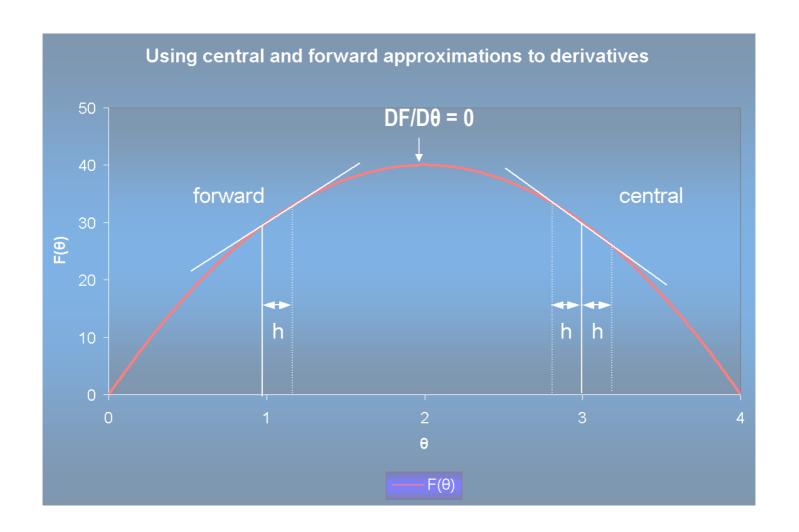
Hessian - second order derivatives - rate of change of rate of change

Consider the gradient:

$$g_i = \frac{\partial f}{\partial \theta_i} \approx \frac{f(\theta + h_i e_i) - f(\theta)}{h_i}$$

$$g_i = \frac{\partial f}{\partial \theta_i} \approx \frac{f(\theta + h_i e_i) - f(\theta - h_i e_i)}{2h_i}$$

A quick reminder of forward and central numerical derivatives calculations



Integral Approximations

Likelihood
$$m(\theta) = \prod_{i=1}^{s} \int p(y_i|X_i, \phi, u_i) q(u_i|\xi) du_i$$

- First Order (as per NM)
 Taylors series expansion around u_i=0
 Only normal data
- Adaptive gaussian quadrature (default)
 Centres integral at u_i, the empirical bayes estimate
 Can choose number of quadrature points (1 = Laplacian approx.)

Termination Criteria - Convergence limits and diagnostics

Convergence is something you decide...not the computer package!

QUANEW algorithm will converge if any of the following are satisfied:

- 1. ABSGCONV < 10⁻⁵
- 2. $FCONV < 10^{-16}$ *

* based on machine precision (= 10⁻¹⁶ on my computer)

- 3. or GCONV $< 10^{-8}$
- 1) = Absolute gradient criteria
- 2) = Relative function criteria
- 3) = Relative gradient convergence

$$\max_{j} |g_{j}(\theta^{(k)})| \le r$$

$$\frac{|f(\theta^{(k)}) - f(\theta^{(k-1)})|}{\max(|f(\theta^{(k-1)})|, \text{FSIZE})} \le r$$

$$\frac{g(\theta^{(k)})^T [\boldsymbol{H}^{(k)}]^{-1} g(\theta^{(k)})}{\max(|f(\theta^{(k)})|, \text{FSIZE})} \le r$$

Limitations!

- Only one level of random effect allowed (although can mimic a second level).
- No link with differential equation solvers.
- Complex dosing histories are not accommodated.

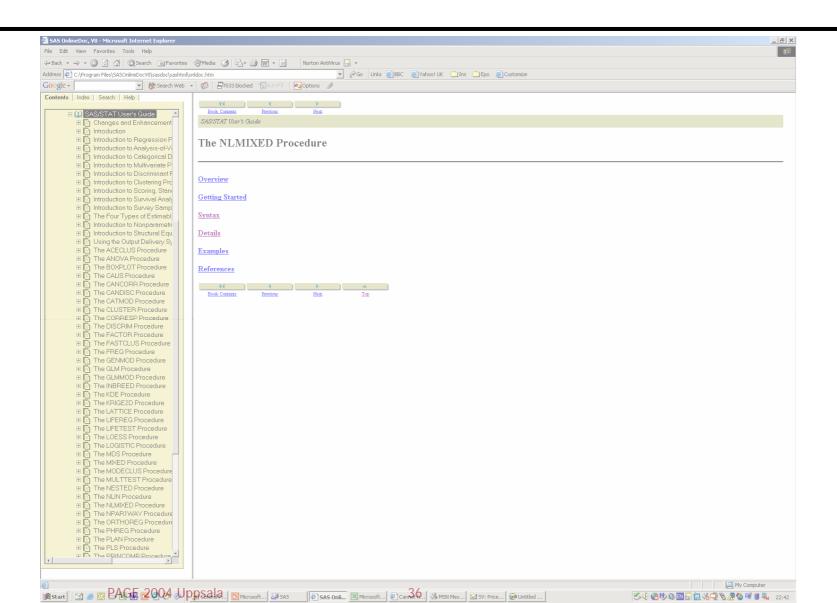
Summary

PROC NLMIXED

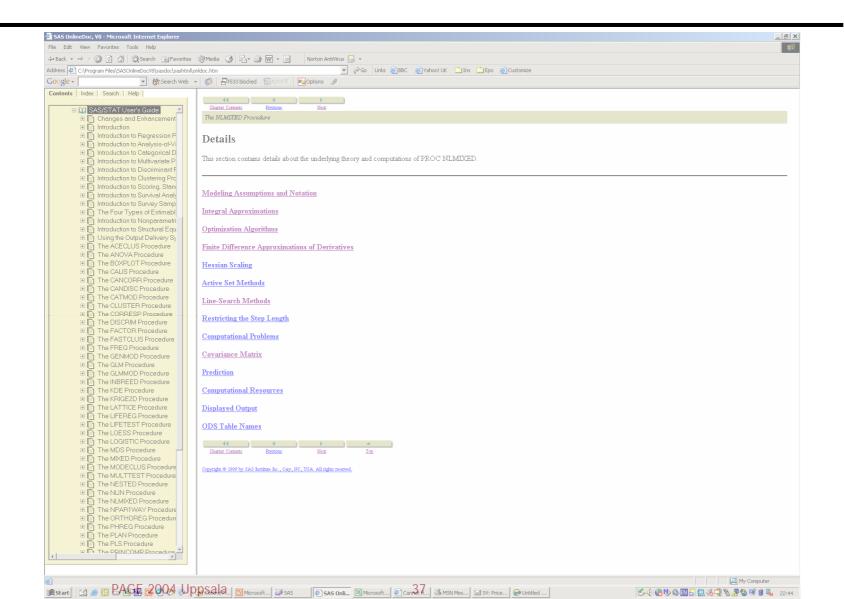
- Well developed.
- Well documented.
- Easy to use.
- Does what is says it can do, very well.
- Easy access to results.
- Three key limitations limit widespread application within PK/PD

Back up

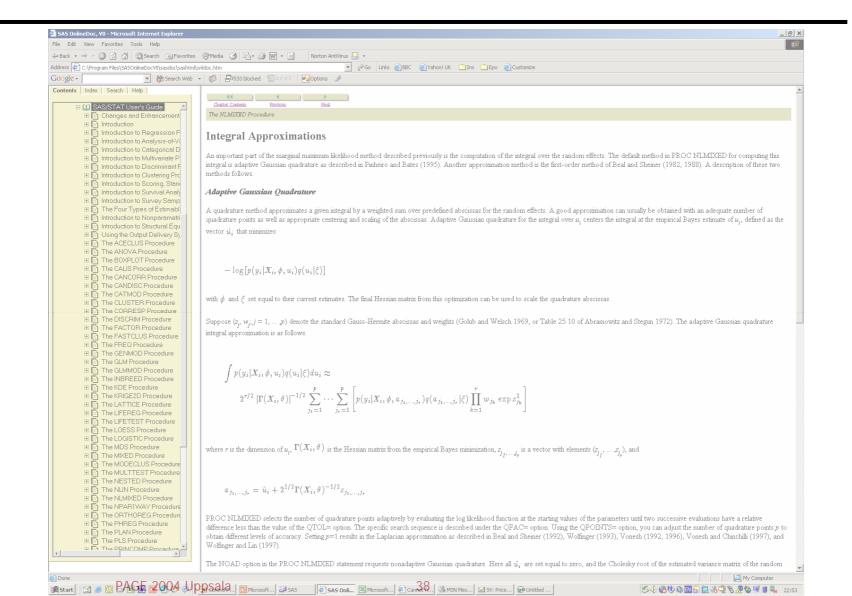
SAS has well documented help files



SAS has well documented help files



SAS has well documented help files



The Output Deliver System (ODS) in SAS allows any output to be available later

ODS Table Name

AdditionalEstimates

ConvergenceStatus

CorrMatAddEst CorrMatParmEst CovMatAddEst CovMatParmEst

DerAddEst

Dimensions

FitStatistics

Hessian

IterHistory
Parameters

ParameterEstimates

Specifications

Ctarting Llagain

StartingHessian

StartingValues

Description

Results from ESTIMATE statement

Convergence status

Correlation matrix of additional estimates Correlation matrix of parameter estimates Covariance matrix of additional estimates Covariance matrix of parameter estimates

Derivatives of additional estimates

Dimensions of the problem

Fit statistics

Second derivative matrix

Iteration history

Parameters

Parameter estimates Model specifications Starting hessian matrix

Starting values and gradient

e.g.

ods output ParameterEstimates = est1; ods output CovMatParmEst=cov1;

Finite difference approximations of derivatives - forward or central?

SAS uses numerical approximations for derivatives.

Gradient - first order derivatives

Hessian - second order derivatives

Consider the hessian:

Forward
$$\frac{\partial^2 f}{\partial \theta_i \partial \theta_j} \approx \frac{f(\theta + h_i e_i + h_j e_j) - f(\theta + h_i e_i) - f(\theta + h_j e_j) + f(\theta)}{h_i h_j}$$

$$\text{Central} \quad \frac{\partial^2 f}{\partial \theta_i^2} \approx \frac{-f(\theta + 2h_i e_i) + 16f(\theta + h_i e_i) - 30f(\theta) + 16f(\theta - h_i e_i) - f(\theta - 2h_i e_i)}{12h_i^2}$$

The "PREDICT" and "ESTIMATE" statements provide additional requested results

Predict - can obtain predicted results.

predict pred out = pred1;

pred

Estimate - can request additional contrasts

```
= disease (1+drug eff*drug delay);
placebo = B0 + B1*(baseline);
dose50 = B0 + B1*(baseline) + emax * 50 / (exp(lec50)+50);
estimate 'Dose of 50mg v placebo' dose50-plac;
```

An example

Adaptive design

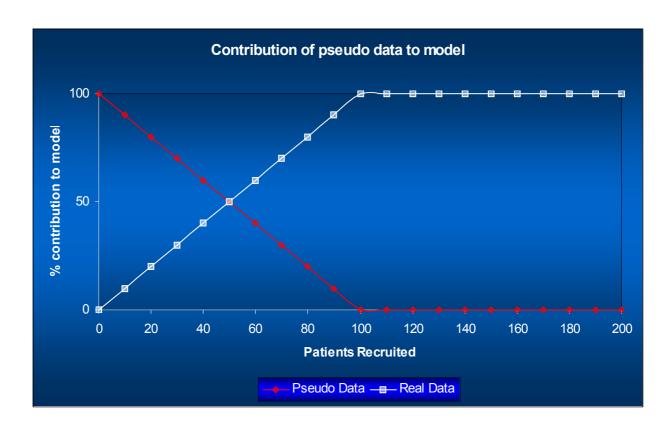
- Using NLMIXED to determine the 'best' dose to allocate the next patient to, given a tentative model.
- M&S has predicted target dose of Drug X to be between 1 and 200mg.
- 10 potential doses = 0 (placebo), 1, 2, 4, 8, 15, 30, 50,100, 200mg.
- Longitudinal model in place, developed on competitors in similar class.
- Initially, expect ED50 to be different for drug X, but similar Emax.
 Target require 95% CI for log(ED50) to be within a 4 fold range.

Using NLMIXED, you can determine which is the best dose to randomise the new patient to

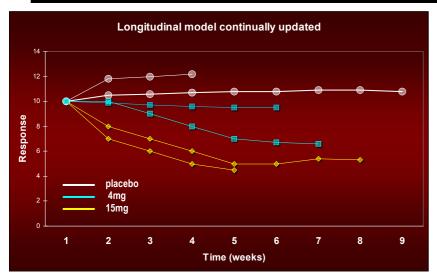
- Step 1: Fit model, with data (pseudo + real), and 1 missing records for each potential dose level.
- Step 2 : Refit model (10 times) putting in predicted value for each 'virtual' patient at each of the 10 doses.
- Step 3: Estimate statistic of choice for each step above.
- Step 4: Determine which 'virtual' patient (dose level) provides the most information to your statistic/statistics of interest.
- Step 5: Randomise to best dose, and repeat for next patient.

To give the model some initial stability, you create pseudo data.

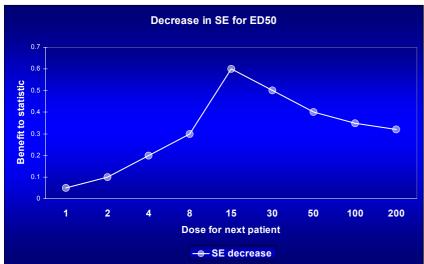
Akin to priors in a bayesian sense. ED50 will depend on pseudo data at start of recruitment, but will not contribute at end.



At each iteration, the data is updated, and the benefit to the test statistic is determined



As study progresses, we can fit new data into longitudinal model



10 NLMIXED fits, with a new dose of 15mg for the next patient likely to providing the most information

Good coding methods - give the algorithms the best possible chance of being successful

- Rescaling
- Centering
- Reparameterisation
- Eigenvalues