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What this talk hopes to show...

Fitting non-linear mixed effect models in SAS using the NLMIXED
procedure.

= Background

= The syntax - defining the model

= The options - defining the criteria for fitting the model

= Strengths and Limitations

= Summary

= (Iftime, a very brief example using NLMIXED - adaptive design)

This outline is based on the SAS online documentation !
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A brief note on the nomenclature used

General term

Fixed effects
Random effects
Var-Cov of random effects

PAGE 2004 Uppsala

NM term

Thetas
Etas
Omega



SAS seem to have incorporated the current
'best’ knowledge on NL mixed models methods

Built on work from a number of 'different’ fields including:

= Beal, Sheiner... Mixed models in PK / PK-PD

= Goldstein... Hierarchical mixed models

= Longford, Diggle... Generalised linear mixed models

= Lindstrom, Bates, Pinheiro...  General applied mixed models

= Davidian, Giltinan... Heteroscedastistic/NP mixed models

+ SAS's own knowledge as well !

This has been 'packaged’ in a new SAS procedure - PROC NLMIXED
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PROC NLMIXED has a number of program

statements which can be used

The following statements can be used with the NLMIXED procedure:

PROC NLMIXED options
ARRAY

PARMS

BOUNDS

BY

CONTRAST

ID

MODEL

RANDOM

PREDICT
ESTIMATE

ODS

REPLICATE
Program statements
Run;
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procedure call and options
array specification

parameters and starting values
boundary constraints
variables

'label’ expression

expressions

model specification

random effects specification
expression

'label' expression

output control

replicate variable

usual SAS programming statements



This talk will focus on the main statements

The most important statements are:

PROC NLMIXED options procedure call and options

PARMS parameters and starting values
BOUNDS boundary constraints

BY variables

MODEL model specification

RANDOM random effects specification

ODS output control

Program statements usual SAS programming statements
Run;
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To help interpret the programming statements,
consider some artificial data

Example results from 1 study of 10

Q
7}
c
o
o
7
Q

12

6
Time (months)

—e— Placebo 50mg 100mg
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To help interpret the programming statements,
consider some artificial data

Example results from 1 study of 10

dose maximum effect

Q
7
c
o
o
7
Q

14

drug onset

J \/‘—‘/‘/Q—_Q/‘/‘j/‘

disease progression

§) 8
Time (months)

—eo— Placebo 50mg 100mg
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The dataset to be used in the NLMIXED
procedure has the relevant data

Data PAGE:
Input Study Drug Dose Time Observed

1 A 50 O 10.0
1 A 50 1 10.9

2 B 0 0 10.0

10 Studies (random effect level)
3 DrugS (IIAII |IB|I and IICII)
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For this artificial drug disease model, the SAS
code might look like:

options
/\
~ N
proc nImixed data=page cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
RATE = 0.5 blvar =1 b2var 1 s2= 1;
bounds RATE>O0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease
if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug
drug delay = l-exp (-RATE*time) ; delay
pred = disease* (1+drug eff*drug delay); response

model observed ~ normal (pred, s2);

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;
ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;

run;
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For this artificial drug disease model, the SAS
code might look like:

options
A
~ N

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1

RATE = 0.5 blvar =1 b2var 1 s2= 1;
bounds RATE>O0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease
if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug
drug delay = l-exp (-RATE*time) ; delay
pred = disease* (1+drug eff*drug delay); response

model observed ~ normal (pred, s2);

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;
ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;

run;
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The "PARMS" statement defines starting points
or Initial grid search for each parameter

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;

parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
RATE = 0.5 blvar =1 b2var 1 s2= 1;

bounds RATE>0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease

if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug

drug delay = l-exp (-RATE*time) ; delay

pred = disease* (1+drug eff*drug delay); response
model observed ~ normal (pred, s2);

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;
ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;
run;
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The "PARMS" statement defines starting points
or Initial grid search for each parameter

The "PARMS" statement gives initial estimates for the model parameters.
You can also give a range of potential values. SAS will perform the grid
search, and start the optimisation at the best combination.

Example:

parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5

slope = 1 to 5 by 1 blvar=1 b2var=1 s2= 1 RATE = 0.5;

= Note the use of "TO" and "BY".
= (Can use this to simply plot the likelihood function (no fitting).
=  (Can read in previous model fit parameters.
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The "BOUNDS" and "BY" statements do exactly
what you would expect.

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1
RATE = 0.5 blvar =1 b2var 1 s2= 1;

bounds RATE>0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease
if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug
drug delay = l-exp (-RATE*time) ; delay
pred = disease* (1+drug eff*drug delay); response

model observed ~ normal (pred, s2);

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;
ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;

run;
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The "BOUNDS" and "BY" statements do exactly
what you would expect.

The "BOUNDS" statement

= Limits on any parameters (although should generally be avoided with
model reparameterisation and/or reduction).

Example:

bounds RATE>0;

The "BY" statement
= Useful for repeated model fitting (e.g. bootstrap samples)

Example

by boot sample;
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The "MODEL" statement allows a wide variety of
models, including defining your own log likelihood

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1

RATE = 0.5 blvar =1 b2var 1 s2= 1;
bounds RATE>O0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease
if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug
drug delay = l-exp (-RATE*time) ; delay
pred = disease* (1+drug eff*drug delay); response

model observed ~ normal (pred, s2);

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;
ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;
run;
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The "MODEL" statement allows a wide variety of
models, including defining your own log likelihood

The "MODEL" statement defines the type of likelihood function.

Valid distributions are as follows.

normal(m,v) specifies a normal distribution with mean m and variance v.
binary(p) specifies a binary (Bernouilli) distribution with probability p.
binomial(n,p) specifies a binomial distribution with count n and probability p.
poisson(m)  specifies a Poisson distribution with mean m.

general(ll) specifies a general log likelihood function that you define.

Examples

model observed ~ normal (pred, s2);

or equivalently

11=-.5*10g (2*3.14159265358979*s2)-(.5/s82) * (y—-pred) **2;

model y~general (11);
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The "RANDOM" statement defined the variance
covariance matrix of random effects

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10

parms LED50 A=1 LED50 B=2 LED50 C=3 EMAX=0.5 SLOPE =

RATE = 0.5 blvar =1 b2var 1 s2= 1;
bounds RATE>0;

Disease

if drug

if drug

if drug
drug eff
drug delay
pred

model observed

10 + O-l*(SLOP*time;
"A" then LED50=LEB50 A;

"B" then LED50=LED50 B;

ne RED50=LED50 C;
(EMAX * dose / (exp (LED50)+dose)
l-exp (FRATE*time) ;

disease* (1+drug eff*drug delay);

normal (pred, s2);

1 to 5byl

.
’

ftol=1E-10;

disease

drug

delay
response

random bll b22

normal ([0,0], [bllvar, 0, b22var]) subject=study out =checkranl;

ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;
run;
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The "RANDOM" statement defined the variance
covariance matrix of random effects

Define (lower) diagonal and off-diagonal random elements that need to be
estimated.

e.g. Simple two random effects, no correlation

Q"0
0 022

random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl}

eg. ( Q" Q2 Q% 0 )
Q2 02 QB Q4
QB 0B 0B 0

L0 0% 0 04

randombl b2 b3 b4 ~ normal ([0,0,0,0], [Q11,Q12,022,Q013,023,Q33,0,Q24,0,Q44])
subject=study;
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The "RANDOM" statement defined the variance
covariance matrix of random effects

Define (lower) diagonal and off-diagonal random elements that need to be

estimated.

e.g. Simple two random effects, no correlation

Q'
0

0
022

random bll b22 ~ normal ([0,0], [bllvar, O, b22var])

subject=study out =checkranl}

eg. ( Q"
Q12
013

0

022
023
024

033
0

\

044 )

randombl b2 b3 b4 ~ normal ([0,0,0,0], [Q11,Q12,022,Q013,023,Q33,0,Q24,0,Q44])

subject=study;
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The Output Deliver System (ODS) in SAS allows
any output to be available later

proc nImixed data=test cov corr method=firo tech=quanew gtol=1E-10 ftol=1E-10;
parms LED50_A=1 LED50_B=2 LED50_C=3 EMAX=0.5 SLOPE = 1 to 5 by 1

RATE = 0.5 blvar =1 b2var 1 s2= 1;
bounds RATE>O0;

Disease = 10 + 0.1* (SLOPE+bl11) *time; disease
if drug = "A" then LED50=LED50 A;

if drug = "B" then LED50=LED50 B;

if drug = "C" then LED50=LEDS50 C;

drug eff = (EMAX+b22) * dose / (exp(LED50)+dose); drug
drug delay = l-exp (-RATE*time) ; delay
pred = disease* (1+drug eff*drug delay); response

model observed ~ normal (pred, s2);
random bll b22 ~ normal ([0,0], [bllvar, O, b22var]) subject=study out =checkranl;

ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;

run;
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The Output Deliver System (ODS) in SAS allows
any output to be available later

Any output that is can be written to the results file can also be saved to a
dataset for subsequent manipulation. This includes:

= Parameter estimates
= Fit statistics

= Model specification

= (Covariance matrix

= Correlation matrix

= Convergence status
= efc.

e.g.

ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;
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Some additional nice features

Most SAS programming statements (e.g. "If..Then") are supported.

if drug = "A" then LED50=LED5S0 A;
if drug = "B" then LED50=LEDS50 B;
if drug = "C" then LED50=LEDS50 C;

Using previous model parameters (reading in the last fit)

ods output ParameterEstimates=pe; * (create dataset with estimated parameters);
...then on the next call...
parms / data=pe; * (read in dataset with previous estimates);
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Options in the model fitting

Where SAS shows it's strength, and the
complexities of fitting these models !
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Some of the main options are:

Basic Options
DATA=input data set
METHOD-=integration method

Displayed Output Specifications

START=gradient at starting values

HESS=Hessian matrix

ITDETAILS =iteration details

CORR-=correlation matrix

COV=covariance matrix

ECORR=corr matrix of additional estimates

ECOV=cov matrix of additional estimates

EDER=derivatives of additional estimates

ALPHA==alpha for confidence limits

DF=degrees of freedom for p values and
confidence limits

Derivatives Specifications
FD[=]finite-difference derivatives
FDHESSIAN[=]finite-difference second derivatives
DIAHES=use only diagonal of Hessian
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Optimisation Specifications
TECHNIQUE=minimization technique
UPDATE=update technique
LINESEARCH=line-search method
LSPRECISION=line-search precision
HESCAL=type of Hessian scaling
INHESSIAN=start for approximated Hessian
RESTART=iteration number for update restart
OPTCHECK([=]check optimality in neighbourhood

Termination Criteria Specifications
MAXFUNC=maximum number of function calls
MAXITER=maximum number of iterations
MINITER=minimum number of iterations
MAXTIME=upper limit seconds of CPU time
ABSCONV=absolute function convergence criterion
ABSFCONV=absolute function convergence criterion
ABSGCONV=absolute gradient convergence criterion
ABSXCONV=absolute parameter convergence criterion
FCONV-=relative function convergence criterion
FCONV2=relative function convergence criterion
GCONV=relative gradient convergence criterion
XCONV-=relative parameter convergence criterion
FDIGITS=number accurate digits in objective function
FSIZE=used in FCONV, GCONYV criterion
XSIZE=used in XCONV criterion
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Additional refinement and debugging of the

model fitting can be achieved with other options

Quadrature Options
NOAD=no adaptive centring
NOADSCALE=no adaptive scaling
OUTQ=output data set
QFAC=search factor
QMAX=maximum points
QPOINTS=number of points
QSCALEFAC=scale factor
QTOL=tolerance

Debugging Output

LIST=model program, variables
LISTCODE=compiled model program
LISTDEP=model dependency listing
LISTDER=model derivative

XREF=model cross reference

FLOW=model execution messages
TRACE=detailed model execution messages

Singularity Tolerances
SINGCHOL=tolerance for Cholesky roots
SINGHESS=tolerance for Hessian
SINGSWEEP=tolerance for sweep
SINGVAR-=tolerance for variances

PAGE 2004 Uppsala

Empirical Bayes Options
EBSTEPS=number of Newton steps
EBSUBSTEPS=number of sub steps
EBSSFRAC=step-shortening fraction
EBSSTOL=step-shortening tolerance
EBTOL=convergence tolerance
EBOPT= comprehensive optimisation
EBZSTART=zero starting values

Step Length Specifications
DAMPSTEP[=]damped steps in line search
MAXSTEP=maximum trust-region radius
INSTEP=initial trust-region radius

Covariance Matrix Tolerances
ASINGULAR=absolute singularity for inertia
MSINGULAR-=relative M singularity for inertia
VSINGULAR-=relative V singularity for inertia
G4=threshold for Moore-Penrose inverse
COVSING=tolerance for singular COV matrix
CFACTOR=multiplication factor for COV matrix

Constraint Specifications
LCEPSILON=range for active constraints
LCDEACT=LM tolerance for deactivating
LCSINGULAR=tolerance for dependent constraints
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A brief reminder of function optimisation and
gradient/hessian terms
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Optimisation Algorithms

7 function optimisation methods

quasi-Newton (DBFGS, DDFP, BFGS, DFP)
trust region

Newton-Raphson with line search
Newton-Raphson with ridging

double-dogleg (DBFGS, DDFP)

conjugate gradient (PB, FR, PR, CD)
Nelder-Mead method

*default
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QUANEW *
TRUREG
NEWRAP
NRRIDG
DBLDOG
CONGRA
NMSIMP

Needs
Gradient Hessian
Yes No
Yes Yes
Yes Yes
Yes Yes
Yes No
Yes No
No No



Finite difference approximations of derivatives
- forward or central?

SAS uses numerical approximations for derivatives.
Gradient - first order derivatives - rate of change of function
Hessian - second order derivatives - rate of change of rate of change

Consider the gradient:

Fonward _of T+ Aiei) — J(#)
gi= 24 R y
Central P R )

a8, %,
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A quick reminder of forward and central
numerical derivatives calculations

Using central and forward approximations to derivatives

DF/D6 =0
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Integral Approximations

5

Likelihood ~ m(#) =TT [ ptwil i é,u)eCusle)du,

1=1

= First Order (as per NM)
Taylors series expansion around u.=0
Only normal data

=  Adaptive gaussian quadrature (default)
Centres integral at u, the empirical bayes estimate
Can choose number of quadrature points (1 = Laplacian approx.)
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Termination Criteria - Convergence limits and
diagnostics

Convergence is something you decide...not the computer package!

QUANEW algorithm will converge if any of the following are satisfied:

1. ABSGCONV < 10
2. FCONV < 1 0'16 ' * based on machine precision (= 106 on my computer)
3. or GCONV <108

1) = Absolute gradient criteria max|g;(8%))| <+

. . L F(8'%) — (“UI <
2) = Relative function criteria max(|f(8%~1)|, FSIZE) —

g(¢OTEDT (00
max(|f(#%))|, FSIZE) —

3) = Relative gradient convergence
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Limitations!

= Only one level of random effect allowed (although can mimic
a second level).

= No link with differential equation solvers.

=  Complex dosing histories are not accommodated.
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Summary

PROC NLMIXED

=  Well developed.

= Well documented.

= Easy to use.

= Does whatis says it can do, very well.

= Easy access to results.

= Three key limitations limit widespread application within PK/PD
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AS has well documented help files
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vector 4, that minimizes

with ¢¢ and ¢ set equal to their current estimates. The final Hessian matrix from this optimization can be used to scale the quadrature abscissas
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PROC NLMDED selects the mumber of quadrature points adaptively by evaluating the log likelhood function at the starting values of the parareters until two successive evaluations have a relative
= B The PLAN P g difference less than the value of the QTOL= option. The specific search sequence is described under the QFAC= option, Using the QPOINTSE= option, you can adjust the mmber of quadrature powts p to
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w5 Tha DDIV\II"HMDD»n:—nH:in “Welinger and Lin (1397)

The MOAD option in the PROC NLMDED statement recuests nonadaptive Gaussian cquadrature. Here all 4f; are set equal to zero, and the Choelesky root of the estimated variance matrix of the random El
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The Output Deliver System (ODS) in SAS allows
any output to be available later

ODS Table Name Description
AdditionalEstimates Results from ESTIMATE statement
ConvergenceStatus Convergence status
CorrMatAddEst Correlation matrix of additional estimates
CorrMatParmEst Correlation matrix of parameter estimates
CovMatAddEst Covariance matrix of additional estimates
CovMatParmEst Covariance matrix of parameter estimates
DerAddEst Derivatives of additional estimates
Dimensions Dimensions of the problem
FitStatistics Fit statistics
Hessian Second derivative matrix
lterHistory |teration history
Parameters Parameters
ParameterEstimates Parameter estimates
Specifications Model specifications
StartingHessian Starting hessian matrix
StartingValues Starting values and gradient

€.d.

ods output ParameterEstimates = estl; ods output CovMatParmEst=covl;
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Finite difference approximations of derivatives
- forward or central?

SAS uses numerical approximations for derivatives.
Gradient - first order derivatives
Hessian - second order derivatives

Consider the hessian:

Forward o f f(8 4 e+ hjes) — f(8 4 hiey) — f(8 4 hjes) + f(8)
90,98, Rik;

Central  2°/ . —/(8+2hie)) + 167(8 + hiei) —30/(8) + 16/(8 — hie;) — f(8 — 2hye;)
08 "~ 124
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The "PREDICT" and "ESTIMATE" statements
provide additional requested results

Predict - can obtain predicted results.

predict pred out = pred1;

Estimate - can request additional contrasts

pred = disease (l+drug eff*drug delay);

placebo = B0 + B1*(baseline);
dose50 = B0 + B1*(baseline) + emax * 50 / (exp(lec50)+50) ;
estimate 'Dose of 50mg v placebo' doseS0-plac;
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An example

Adaptive design

. Using NLMIXED to determine the 'best' dose to allocate the next patient to, given a
tentative model.

. M&S has predicted target dose of Drug X to be between 1 and 200mg.

. 10 potential doses = 0 (placebo), 1, 2, 4, 8, 15, 30, 50,100, 200mg.

. Longitudinal model in place, developed on competitors in similar class.

. Initially, expect ED50 to be different for drug X, but similar Emax.
Target - require 95% CI for log(ED50) to be within a 4 fold range.
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Using NLMIXED, you can determine which is
the best dose to randomise the new patient to

Step 1 : Fit model, with data (pseudo + real), and 1 missing records
for each potential dose level.

Step 2 : Refit model (10 times) putting in predicted value for each
'virtual' patient at each of the 10 doses.

Step 3 : Estimate statistic of choice for each step above.

Step 4: Determine which 'virtual' patient (dose level) provides the
most information to your statistic/statistics of interest.

Step 5: Randomise to best dose, and repeat for next patient.
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To give the model some initial stability, you
create pseudo data.

Akin to priors in a bayesian sense. ED30 will depend on pseudo data at
start of recruitment, but will not contribute at end.

Contribution of pseudo data to model
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At each Iteration, the data Is updated, and the
benefit to the test statistic I1s determined

Longitudinal model continually updated

Decrease in SE for ED50
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As study progresses, we can
fit new data into longitudinal
model

10 NLMIXED fits, with a new
dose of 15mg for the next
patient likely to providing the
most information



Good coding methods - give the algorithms the
best possible chance of being successful

= Rescaling

= Centering

= Reparameterisation
= Eigenvalues
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