
Applications of
Distributed computing
in Drug development

Mark Sale M.D.
Global Director, Research
Modeling and Simulation.

Taxonomy of distributed computing:
Parallel processing - more than one processor in
a machine

Oak Ridge virtual parallel machine project. -
1970’s

Clusters - Beowulf cluster - 1994.
Dedicated nodes - better load balancing
Isolated network - don’t need to worry (much)
about network traffic

Grid computing

Grid computing:
“Grid is a type of parallel and distributed
system that enables the sharing, selection,
and aggregation of geographically distributed
"autonomous" resources dynamically at
runtime depending on their availability,
capability, performance, cost, and users'
quality-of-service requirements.” 1

1 www.gridcomputing.com

Example:
SETI@home (Search for Extraterrestrial
Intelligence)

Data from radio telescope was collected,
by segment of the sky
Sent, over internet, to individuals
computers- often home computers, for
analysis - looking for patterns suggesting
ETI.

What does that mean?
They aren’t your computers (and so you don’t
have to pay for them)
They aren’t your computers (and so load-
management is limited)
They run over internet protocols (usually as
web services) - I/O is limited

Computers typically “check in” every so often
to see if there is anything to do (q 5 minutes in
GSK implementation)

But...
You can basically have as many
computers as you want (GSK has 1000
so far, could have 50,000) - for free.

You also need to break the problem up
into fairly large pieces (for example, a
NONMEM run).

Other applications:
Application Status Priority Timelines
BLAST On Hold High On Hold -

Investigating Use
TurboSEQUEST On Hold Medium On Hold - Awaiting

Binaries
Protein Docking In-Progress Medium 28th Feb 2002
Confort In-Progress Medium 1st March 2003
*LigandFit Completed High 31st Dec 2002
*Diverse
Solutions

Completed Medium 1st Nov 2002

*Gold Completed High 20th Nov 2002
SCAMPI Released High 16th Sept 2002
Nonmem Released High 30th Sept 2002

All except NONMEM are vendor provided

Grid computing, Pop PK
models and Genetic algorithm

Proposed new method* for model selection.
Current forward addition algorithm is less than
perfect - there is no reason to believe it will
ever give you the best model.
Other disciplines refer to this as binary tree
search (or trial and error, or hunt and peck)
Roughly corresponds to a hill climbing
algorithm.

*Patent pending

Model selection is a discrete
(finite) space search problem

Spectrum of discrete space search algorithms,
from most robust/least efficient* to least robust,
most efficient

Least robust Most robust
Most efficient Least efficient

*efficient defined as number of models until you reach the end, robust is defined as the probability of
finding the best, or near best model using the algorithm

Downhill/b
inary tre

e/

on/tria
l and error -

ger programming ba

(ordered categorica

ndom search meth

austive search (no

)

forward

additi

monotonic Inte

sed

methods

l)

Ra

ods (GA,

SA) Exh

Most Structured space Least structured space

structure

Candidate model space:

1
(1+THETA*WT)

EXP(THETA*WT)

1

2

3

0

1

2

3

None

+ETA

*exp(ETA)

N compartments

* * *
* * *

* * *

* * *
* * *

* * *

* * *
* * *

* * *

How to search space
Full grid search

If we have 5 parameters
(Ka,V,CL,K23,K32) and 4 covariates
(Age, wt, gender, race), and 3
candidate models for each (none,
additive, log), we get 3^20 candidate
models in the space (3,486,784,401)
(*omega options*number of
compartments etc)

∏
dimensionsofNumber

valuesofnumber
1

)(

Genetic Algorithm
Attempts to replicate the “optimization” process
of evolution/survival of the fittest.
Each set of candidate features is coded into a
base 2 number. If there are 2 options in the
feature set, the values are [0 1] if four

[(0 0),(0 1),(1 0),(1 1)]
These “genes” are strung together into a
genome.

The genome - 3 genes, 2
models (individuals)

1|2 V=f(WT) V = f(age)...
cmt?
0 0, 1 0, 0 ;1 cmt, V=f(1+Θ•wt), V!f(age)
1 1, 0 0, 1 ;2 cmt, V=f(e^wt), V= f(1+Θ• age)

Generate a random “population” of these
individuals/models, assess the “fitness” of each.
Select from the population, with replacement,
proportional to fitness.
Pair off those selected, cross over and mutate.
New generation.

Fitness?
What do we want the answer to be?

Minimize successfully
Covariance step
Low objective function
Parsimonious - few theta, etas,
epsilons
ABS(Correlations) < 0.95
Ratio of largest/smallest Eigenvalues
< 1000
FOCE?

Options for GA search

Does it work?
We compared simple GA to exhaustive

search for a 13 dimensional problem
(solution space size = 12,288). Simple
GA found the same answer

We compared simple GA to exhaustive
search for a 16 dimensional problem
(solution space size = 98,304). Simple
GA found a solution that was one bit
different from the best solution.

GA is good at finding
generally good regions

Not very good at finding THE best
solution within a small region. To
find that one bit it must mutate the
best model at that specific bit.

Hill Climbing
Periodically, the algorithm will take
the current best solution(s), and do
a local hill climbing search -
changing each bit (one at a time)
and evaluating the solution. This is
repeated until no further
improvement is seen.

Result:
Now found “best” solution in search
space

Add re randomization:
Same robustness and efficiency as
exhaustive search - at least when
sample size is < 1% of the search
space.

Search parameters:
Population size - number of
“individuals” (model) used in the
selection process. We’ve tried between
50 and 500. Increase in speed is
minimal with population size > 300.
Number of generations - typically used
about 50
Number of niches 4-8 for population
size of 300.

Number of unique models in
typical analysis:

300 models per generation
50 generations
50% rerun models
5 Hill climbing runs (once per 10 generations,
downhill in each niche) - typically ~500 per run
Total of > 8000 models.
Not as efficient as traditional methods.
However, with 300 computers running them,
computational burden is reasonable.

Distributed solution
Currently 1000 computers available
Control files are written on local computer,
sent, with all required NONMEM *.obj and
*.lib files and all required compiler files
(g77 compiler) to “agent” computer.
Server is queried q 1 minute to see if it is
done.
Zipped results sent back to local computer.

6272

Output:
Min fitness for generation 5 = -868.463
No change in min fitness for 1 generations
Starting generation 6 (n=139) 05/30/2003 12:57:54 PM
Job name = us0081421.ga69201540
Data set name = us0081421.data18191436
Number of processors used for generation 5 = 121
Total CPU time for generation 5 = 9.11 hours
Mean number of processor for generation 5 = 45.55
Maximum NONMEM execution time without timing out =
4.20 minutes, model #119
NONMEM timeout reset to 8.66 minutes
Run dist for generation 6 successful at 05/30/2003
1:10:03 PM
Run distributed time = 00:12
get result time = 00:02

Issues:
Currently, computer must be on the intranet
continuously.
Difficult to recover from network failure.
Inefficiency as current version waits until all
models in generation are finished until new
models are created.

All to be solved in next version - web
application

Conclusion:
(Modified) Genetic algorithm seem to be a
promising approach to model selection in
NONMEM
Distributed computing results in a 30 to 150
fold increase in speed for Genetic algorithm
search, making it a practical application
Other applications include MCMC methods,
where distributed computing may be useful not
only in model selection, but convergence
criteria and model selection criteria.

	Applications of Distributed computing in Drug development
	Taxonomy of distributed computing:
	Grid computing:
	Example:
	What does that mean?
	But...
	Other applications:
	Grid computing, Pop PK models and Genetic algorithm
	Model selection is a discrete (finite) space search problem
	How to search space
	Genetic Algorithm
	The genome - 3 genes, 2 models (individuals)
	Fitness?
	Does it work?
	GA is good at finding generally good regions
	Hill Climbing
	Result:
	Add re randomization:
	Search parameters:
	Number of unique models in typical analysis:
	Distributed solution
	Output:
	Issues:
	Conclusion:

