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What is Distributed Computing?

• It is using two workstations to solve one task 
and gaining 100% in speed

• It is using 1000 processors (CPUs) to solve a 
task that otherwise would have been 
(practically) impossible to solve.

• It is using available resources more effeciently
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Enabling distributed computation

There is more to distributed computing than 
connecting computers to a common network

• Making the computing nodes talk to each other 
and cooperate

• Identifying the parts of a scientific problem that 
can be parallelized
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What are the potential benefits of 
DC in population PK/PD?

• We rely on computers to fit models to data.
– Preferably, this task should be written for 

the potential use of multiple processors
– No software support this today

• There are other tasks within a population 
analysis involving multiple model fits where 
one fit not necessarily depend on a previous.
– Model building
– Model validation



Model Building Model Validation

Automated Stepwise
Covariate Model Building

Model Selection using
Genetic Algorithms

Jackknife

Bootstrap

Case Deletion Diagnostics

Log-Likelihood Profiling

Cross Validation

Posterior Predictive Check

Cross Model Validation

J.S. Urban Hjorth, Computer Intensive Statistical Methods, (Chapman & Hall, New York, 1994)



Computer intensive methods

• Often based on repetition of nearly identical 
tasks that can be performed independently of 
each other

• Often ”embarrassingly parallel”



• Assume that we have a model fit to a data set

• Assume further that we suspect that the true 
confidence interval around our estimate of 
clearance is non-symmetric

Example; The Bootstrap



Bootstrap procedure:

• Draw 2000 new data sets with 
replacement from our data set

• Refit the model for the 2000 bootstrap 
samples

• Compute the confidence intervals for 
clearance from the distribution of the 
bootstrap estimates

R. T. B. Efron, An introduction to the bootstrap, (Chapman & Hall, New York, 1993)



0.00 1.88 3.76 5.64 7.52 9.40 11.28 13.16
CL

0

100

200

300

400

500

95 % Confidence
interval

Original estimate



Example of a small cluster,
prerequisites

The cluster should be

• Easy to set up
• Cheap (low total cost for hardware, software 

and administration)
• Independent of operating system
• Independent of processor architecture
• As far as possible independent of third party 

software
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Cluster enabled operating 
system – Linux and openMosix

Open source operating system Linux
– Red Hat Linux 7.3

Open source Single System Image Clustering 
add-on to Linux
– openMosix for kernel 2.4.19
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P ri nt Server

Link/R x LPT1 LP T2 C OMPo wer/T X

P ri nt Server

Link/R x LPT1 LP T2 C OMPo wer/T X

1 h NONMEM run

Network

Front end node

2x1 GHz

2x1 GHz

1x2.6 GHz

1x2.6 GHz

1x700 MHz

Bootstrap,
5 parallel runs

Long NONMEM run



110 processes: 107 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: 1145.0% user,  5.8% system, 944.2% nice,  0.0% idle
Mem:  514128K av, 453064K used,  61064K free,      0K shrd,   2808K buff
Swap: 1052216K av,    324K used, 1051892K free                 77664K cached

PID USER     PRI  NI  SIZE  RSS SHARE STAT N# %CPU %MEM   TIME COMMAND
1639 grant     11   0  1236 1236     4 S    13 99.9  0.2  77:00 nonmem
2034 anja      19  19  1788 1788   488 S N  13 99.9  0.3   2:02 nonmem
2035 anja      19  19  1800 1800   500 S N   3 99.9  0.3   2:05 nonmem
2036 anja      19  19  1796 1796   496 S N  17 99.9  0.3   2:06 nonmem
2043 anja      19  19  1796 1796   492 S N   5 99.9  0.3   2:09 nonmem
2045 anja      19  19  1792 1792   496 S N   4 99.9  0.3   1:58 nonmem
2046 anja      19  19  1796 1796   496 R N   0 99.9  0.3   1:38 nonmem
2047 anja      19  19  1788 1788   492 S N   5 99.9  0.3   2:04 nonmem
2050 anja      20  19  1788 1788   492 S N   4 98.8  0.3   2:07 nonmem
1715 grant     17   0  1772 1772   460 S    19 98.6  0.3  59:51 nonmem
2049 anja      19  19  1796 1796   496 S N  18 50.3  0.3   1:29 nonmem
2044 anja      19  19  1808 1808   504 S N  18 50.2  0.3   1:50 nonmem
2048 anja      19  19  1616 1616   320 R N   0 45.6  0.3   0:53 nonmem
2051 root       9   0  2108 2108  1740 S     0  0.3  0.4   0:00 sshd
2116 lasse      9   0  1040 1040   824 R     0  0.3  0.2   0:00 mtop
2054 lasse      9   0  4212 4212  3396 S     0  0.1  0.8   0:00 gnome-terminal

1 root       8   0   476  476   420 S     0  0.0  0.0   0:08 init
2 root       8   0     0    0     0 SW    0  0.0  0.0   0:00 keventd
3 root      19  19     0    0     0 SWN   0  0.0  0.0   0:00 ksoftirqd_CPU0
4 root      19  19     0    0     0 SWN   0  0.0  0.0   0:00 ksoftirqd_CPU1



Benefits -
Single NONMEM jobs on an 
openMosix cluster

• Better usage of a heterogeneous computer 
pool

• The longest runs get the fastest CPUs

• Easier administration of one front end node 
than of many computational servers

~40 users during the past three 
years

At each day, 5-7 people are 
running jobs on the clusterHardware

Operating
System

Methods
(Software)



Perl-speaks-NONMEM (PsN)

Computer intensive methods using NONMEM shares 
many common tasks:

• Opening, reading, changing, writing to and saving 
NONMEM-files (model files, data files and output 
files)

• Running NONMEM in a controlled fashion, 
registering the termination and analyzing the result.

PsN is intended to provide a common programming 
library for method development using NONMEM
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Perl-speaks-NONMEM

Perl

• Has effective handling of text files
• Has good support for invoking system calls 

within scripts.
• Supports parallel execution
• Is platform independent



Perl-speaks-NONMEM
PsN is object oriented

• Object classes have been created, using the 
NONMEM files as basis
– Model, data and output classes.

• The classes include methods for many tasks, 
e.g.
– Extracting parameter estimates or 

termination status
– Splitting or resampling of data
– Changing initial estimates, etc



PsN based methods

Examples of methods developed using PsN

- Automated covariate model building
- Bootstrap
- Log-likelihood Profiling
- Case Deletion diagnostics

The current version of PsN is 2.0 and it can be 
obtained for free.



Own experiences and thoughts
The demand for system administration of a small cluster 

is 1/3 - 1/2 of one full time employee

Very short runs (<10 sec) do not benefit from a 
distributed environment – overhead of data transfer 
between nodes is too high

Other solutions for distributed computing exist –
expanding area

OpenMosix scales well in this application to at least 20 
CPUs

Hardware

Operating
System

Methods
(Software)



Conclusions

• Affordable, fairly simple solutions for distributed 
computing within the population PK/PD area 
exist

• A distributed computing setup is (presently) a 
pre-requisite for the use of computer intensive 
methods in population PK/PD
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