
Division of Pharmacokinetics and Drug Therapy
Department of Pharmaceutical Biosciences

Uppsala University

Distributed Computing under
Linux

Lars Lindbom and E. Niclas Jonsson

Overview

• What is Distributed Computing?
– Enabling distributed computation

• What are the potential benefits of DC in
population PK/PD?
– Example

• Bootstrap

• Example of a small cluster
• Conclusions

What is Distributed Computing?

• It is using two workstations to solve one task
and gaining 100% in speed

• It is using 1000 processors (CPUs) to solve a
task that otherwise would have been
(practically) impossible to solve.

• It is using available resources more effeciently

Cluster

Enabling Distributed Computation

Computing Nodes

Network

Fileserver,
Tape backup

Personal
Computers

Hardware

Operating
System

Methods
(Software)

Enabling distributed computation

There is more to distributed computing than
connecting computers to a common network

• Making the computing nodes talk to each other
and cooperate

• Identifying the parts of a scientific problem that
can be parallelized

Hardware

Operating
System

Methods
(Software)

What are the potential benefits of
DC in population PK/PD?

• We rely on computers to fit models to data.
– Preferably, this task should be written for

the potential use of multiple processors
– No software support this today

• There are other tasks within a population
analysis involving multiple model fits where
one fit not necessarily depend on a previous.
– Model building
– Model validation

Model Building Model Validation

Automated Stepwise
Covariate Model Building

Model Selection using
Genetic Algorithms

Jackknife

Bootstrap

Case Deletion Diagnostics

Log-Likelihood Profiling

Cross Validation

Posterior Predictive Check

Cross Model Validation

J.S. Urban Hjorth, Computer Intensive Statistical Methods, (Chapman & Hall, New York, 1994)

Computer intensive methods

• Often based on repetition of nearly identical
tasks that can be performed independently of
each other

• Often ”embarrassingly parallel”

• Assume that we have a model fit to a data set

• Assume further that we suspect that the true
confidence interval around our estimate of
clearance is non-symmetric

Example; The Bootstrap

Bootstrap procedure:

• Draw 2000 new data sets with
replacement from our data set

• Refit the model for the 2000 bootstrap
samples

• Compute the confidence intervals for
clearance from the distribution of the
bootstrap estimates

R. T. B. Efron, An introduction to the bootstrap, (Chapman & Hall, New York, 1993)

0.00 1.88 3.76 5.64 7.52 9.40 11.28 13.16
CL

0

100

200

300

400

500

95 % Confidence
interval

Original estimate

Example of a small cluster,
prerequisites

The cluster should be

• Easy to set up
• Cheap (low total cost for hardware, software

and administration)
• Independent of operating system
• Independent of processor architecture
• As far as possible independent of third party

software

Computing Nodes

Example of a small cluster

File server

Personal
Computers

Network
(100 Mb/s Ethernet)

Backup
server

Dedicated servers
and workstations

10 cpus

Pool of personal
desktops

and workstations
5 cpus

Hardware

Operating
System

Methods
(Software)

Cluster enabled operating
system – Linux and openMosix

Open source operating system Linux
– Red Hat Linux 7.3

Open source Single System Image Clustering
add-on to Linux
– openMosix for kernel 2.4.19

Hardware

Operating
System

Methods
(Software)

P ri nt Server

Link/R x LPT1 LP T2 C OMPo wer/T X

P ri nt Server

Link/R x LPT1 LP T2 C OMPo wer/T X

1 h NONMEM run

Network

Front end node

2x1 GHz

2x1 GHz

1x2.6 GHz

1x2.6 GHz

1x700 MHz

Bootstrap,
5 parallel runs

Long NONMEM run

110 processes: 107 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: 1145.0% user, 5.8% system, 944.2% nice, 0.0% idle
Mem: 514128K av, 453064K used, 61064K free, 0K shrd, 2808K buff
Swap: 1052216K av, 324K used, 1051892K free 77664K cached

PID USER PRI NI SIZE RSS SHARE STAT N# %CPU %MEM TIME COMMAND
1639 grant 11 0 1236 1236 4 S 13 99.9 0.2 77:00 nonmem
2034 anja 19 19 1788 1788 488 S N 13 99.9 0.3 2:02 nonmem
2035 anja 19 19 1800 1800 500 S N 3 99.9 0.3 2:05 nonmem
2036 anja 19 19 1796 1796 496 S N 17 99.9 0.3 2:06 nonmem
2043 anja 19 19 1796 1796 492 S N 5 99.9 0.3 2:09 nonmem
2045 anja 19 19 1792 1792 496 S N 4 99.9 0.3 1:58 nonmem
2046 anja 19 19 1796 1796 496 R N 0 99.9 0.3 1:38 nonmem
2047 anja 19 19 1788 1788 492 S N 5 99.9 0.3 2:04 nonmem
2050 anja 20 19 1788 1788 492 S N 4 98.8 0.3 2:07 nonmem
1715 grant 17 0 1772 1772 460 S 19 98.6 0.3 59:51 nonmem
2049 anja 19 19 1796 1796 496 S N 18 50.3 0.3 1:29 nonmem
2044 anja 19 19 1808 1808 504 S N 18 50.2 0.3 1:50 nonmem
2048 anja 19 19 1616 1616 320 R N 0 45.6 0.3 0:53 nonmem
2051 root 9 0 2108 2108 1740 S 0 0.3 0.4 0:00 sshd
2116 lasse 9 0 1040 1040 824 R 0 0.3 0.2 0:00 mtop
2054 lasse 9 0 4212 4212 3396 S 0 0.1 0.8 0:00 gnome-terminal

1 root 8 0 476 476 420 S 0 0.0 0.0 0:08 init
2 root 8 0 0 0 0 SW 0 0.0 0.0 0:00 keventd
3 root 19 19 0 0 0 SWN 0 0.0 0.0 0:00 ksoftirqd_CPU0
4 root 19 19 0 0 0 SWN 0 0.0 0.0 0:00 ksoftirqd_CPU1

Benefits -
Single NONMEM jobs on an
openMosix cluster

• Better usage of a heterogeneous computer
pool

• The longest runs get the fastest CPUs

• Easier administration of one front end node
than of many computational servers

~40 users during the past three
years

At each day, 5-7 people are
running jobs on the clusterHardware

Operating
System

Methods
(Software)

Perl-speaks-NONMEM (PsN)

Computer intensive methods using NONMEM shares
many common tasks:

• Opening, reading, changing, writing to and saving
NONMEM-files (model files, data files and output
files)

• Running NONMEM in a controlled fashion,
registering the termination and analyzing the result.

PsN is intended to provide a common programming
library for method development using NONMEM

Hardware

Operating
System

Methods
(Software)

Perl-speaks-NONMEM

Perl

• Has effective handling of text files
• Has good support for invoking system calls

within scripts.
• Supports parallel execution
• Is platform independent

Perl-speaks-NONMEM
PsN is object oriented

• Object classes have been created, using the
NONMEM files as basis
– Model, data and output classes.

• The classes include methods for many tasks,
e.g.
– Extracting parameter estimates or

termination status
– Splitting or resampling of data
– Changing initial estimates, etc

PsN based methods

Examples of methods developed using PsN

- Automated covariate model building
- Bootstrap
- Log-likelihood Profiling
- Case Deletion diagnostics

The current version of PsN is 2.0 and it can be
obtained for free.

Own experiences and thoughts
The demand for system administration of a small cluster

is 1/3 - 1/2 of one full time employee

Very short runs (<10 sec) do not benefit from a
distributed environment – overhead of data transfer
between nodes is too high

Other solutions for distributed computing exist –
expanding area

OpenMosix scales well in this application to at least 20
CPUs

Hardware

Operating
System

Methods
(Software)

Conclusions

• Affordable, fairly simple solutions for distributed
computing within the population PK/PD area
exist

• A distributed computing setup is (presently) a
pre-requisite for the use of computer intensive
methods in population PK/PD

References

openMOSIX Homepage, http://openmosix.sourceforge.net

Red Hat Linux Homepage, http://www.redhat.com

PsN, Lars.Lindbom@farmbio.uu.se

