

Design evaluation and optimization for models of hepatitis C viral dynamics

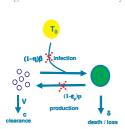
Jeremie Guedj¹⁻³, Caroline Bazzoli², Avidan Neumann³, France Mentré²

¹Los Alamos National Laboratory, New Mexico, USA. ²UMR 738 INSERM and University Paris Diderot, Paris, France. ³Bar-Ilan University, Ramat-Gan, Israel.

Context

· Chronic hepatitis C virus (HCV) infection

- one of the most common causes of chronic liver disease
- standard of care: weekly injections of pegylated interferon (PEG-IFN)+ daily oral ribavirin
- Mathematical modeling of HCV RNA (viral load) decay after treatment initiation
 - complex system of non-linear Ordinary Differential Equations (ODE)
 - critical insights for the understanding of the virus pathogenesis
 - parameters crucial for early predicting treatment outcome
- Population designs evaluation and optimization for multiple response models
 - methodology based on the Fisher Information matrix (M_F) [1]
 - implementation in PFIM 3.0 [2, 3]
- Optimization with PFIM 3.0
 - D-optimality criterion (det(M_F))
 - Federov-Wynn algorithm (statistical design optimization)
 - > optimization of the sampling times in a given set specified by users


Objectives

- To show the relevance of PFIM with model described by ODE system
- To evaluate and optimize designs for the estimation of viral parameters

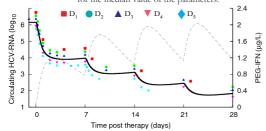
Viral dynamics modeling

- Viral dynamics model with the drug effectiveness under PEG-IFN
 - Neumann et al. viral dynamics model [4]
 - > target cells (T), infected cells (I) and free virus (V)

Figure 1. HCV cells infection dynamics with the ODE system

	$\frac{dX}{dx} = D - k_a X$
	dt
	$\frac{dA}{dt} = k_{a}X - k_{c}A$
	$C(t) = \frac{A(t)}{V_{d}}$
1	$\frac{dT}{dt} = s - \beta (1 - \eta)VT - dT$
	$\frac{dI}{dt} = \beta (1 - \eta)VT - \delta I$
	$dV = \begin{pmatrix} 1 & C(t)^n & 1 \end{pmatrix}_{t=0}^{t}$
	$\frac{dV}{dt} = p \left(1 - \frac{C(t)^n}{C(t)^n + EC_{so}^n} \right) I - cV$

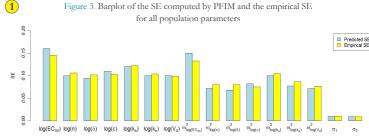
- pharmacokinetic model of concentrations of PEG-IFN [5]
 - > first order absorption and elimination
 - $\,\triangleright\,$ D : dose of 180 μg of PEG-IFN by injection (weekly basis)
- no closed-form solution to this system
- as only concentrations of PEG-IFN and viral load are measured
 - some parameters are fixed [6]: p=10, s=20000 mL⁻¹.d⁻¹, d=0.001 d⁻¹, b=10⁻⁷ mL.d⁻¹, F=1, η= 0


· Population model

- Population parameters
- > values of fixed effects
- > exponential model for random effects (CV =50%)
- > additive error model for concentrations and log₁₀ (viral load)
- Population designs
 - five popular designs of the literature [7, 8, 9, 10, 5]

Table 1. Design used in the five studies of viral dynamics.

Design	Reference	Measurement times (in days after first injection)	Number of samples
D_1	Zeuzem (2005)	{0, 1, 4, 7, 8, 15, 22, 29}	8
D_2	Sherman (2005)	{0, 0.25, 0.5, 1, 2, 3, 7, 10, 14, 28}	10
D_3	Herrmann (2003)	{0, 0.25, 0.5, 1, 2, 3, 4, 7, 10, 14, 21, 28}	12
D_4	Zeuzem (2001)	$\{0, 0.040, 0.080, 0.12, 0.20, 0.33, 1, 2, 3, 4, 7, 14, 21, 28\}$	14
D_5	Talal (2006)	{0, 0.25, 0.5, 1, 2, 3, 5, 6, 7, 7.25, 7.5, 8, 9, 14, 15, 16}	16


Figure 2. Simulation of the viral dynamics (black) and PK profile (dashed) for the median value of the parameters.

Methods

- 1 Comparison between the standard error (SE) given by PFIM and the empirical SE
 - simulation of 500 data sets (R software) using D3 design
 - estimation of the population parameters with MONOLIX (SAEM)
 - computation of the empirical SE defined as the standard deviation on the 1000 estimates of each parameter
- 2 Evaluation of five designs [Table 1]
 - 30 subjects
- 3 Design optimisation using PFIM 3.0
- total number of samples: 240
 - potential sampling times are {D1-D5}
 - different number of sampling times per subject: 3, 4, 5, 6, 7

Results

→ SE predicted by PFIM close to the empirical one

→ Relevance of PFIM for models described by ODE system

Table 2. SE obtained for the fixed effects with the five designs included 30 patients

 \rightarrow Similar SE for all pharmacokinetic (PK) parameters \rightarrow D₅ can precisely estimate IFN effectiveness (EC₅₀ & n)

0.10 0.10 0.11 0.11 0.10 0.10

Table 3. Optimal designs for N = 240 sampling times per response according to the number of samples per patient

r r r r											
Number of samples	N	Optimal Design {(sampling times), n}	log(EC ₅₀)	log(n)	log(δ)	log(c)	log(k _a)	log(k _e)	log(V _d)	Information criterion	
3	80	(0.7.9), 3 (0.10,28), 11 (0.1,28), 16 (0.4,29), 19 (0.1,4), 31	0.21	0.12	0.081	0.096	0.14	0.11	0.084	193.2	
4	60	\[\begin{pmatrix} (0,1,4,28), 38 \\ (0,1,10,28), 22 \end{pmatrix} \]	0.17	0.090	0.070	0.090	0.12	0.083	0.08	230.2	
5	48	\[\begin{pmatrix} (0,1,4,16,28), 14 \\ (0,1,7,10,29), 34 \end{pmatrix} \]	0.14	0.061	0.057	0.075	0.087	0.068	0.061	224.0	
6	40	{(0,1,4,7,16,28), 40}	0.15	0.095	0.084	0.10	0.11	0.095	0.090	208.3	
7	34	\[\begin{pmatrix} (0,0.040,1,4,7,9,29), 4 \\ (0,1,4,7,9,28,29), 10 \\ (0,0.040,1,4,7,16,28), 20 \end{pmatrix} \]	0.15	0.070	0.065	0.081	0.094	0.075	0.070	193.0	

→ Best design with a number of samples per patient of four
 → Close SE as D₅ with a reduction by two of the number of samples
 → Importance of sampling times at four weeks

Conclusion

- Good approximation of M_F in PFIM for ODE systems
 - negligible computation burden to evaluate / optimise designs
- Total number of sampling measurements reduced by half with an appropriate design
- · Design should not neglect long-term kinetics

References

[1] Bazzoli et al. Statistics in Medicine. 2009, [2] Bazzoli et al. Computer Methods and Program in Biomedicine. 2009, [3] www.pfim.biostat.fr, [4] Neuman et al. Science. 1998, [5] Talal et al. Hepatology. 2006, [6] Gueidj et al. Bulletin of Mathematical Biology. 2007, [7] Zeuzem et al. Journal of Hepatology. 2005, [8] Sherman et al. Gastroenterology. 2005, [9] Herrmann et al. Hepatology. 2003, [10] Zeuzem et al. Gastroenterology. 2001.