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• The objective of this tutorial is to briefly describe the 

statistical basis of Expectation-Maximization algorithms 

in Nonlinear Mixed Effects analysis 

• Monte Carlo Importance Sampling 

• Pseudo-Random (standard) 

• Quasi-Random 

• Stochastic approximation expectation-maximization 

• Linearized EM (Iterative two stage) 

• How to use these methods 

• For which models and data types are these methods 

useful 

Objective  
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• Monte Carlo (MC) Importance Sampling Expectation 

Maximization (EM) 

– First Implemented in PDx-MCPEM by Serge Guzy and in S-
ADAPT by Bob Bauer. S-ADAPT is an extension of ADAPT II by 
D’Argenio and Schumitzky. 

– Quasi-Random variant by Robert Leary, first implemented in 
Phoenix NLME 

• Markov Chain Monte Carlo (MCMC) Stochastic Approximation 

Expectation Maximization (SAEM) 

– Developed by Marc Lavielle,  First implemented in Monolix 

• Iterative Two Stage 

– Approximate EM method, described by Steimer,et al., extended by 
Mentre and Gomeni, first implemented in P-Pharm 

 

List of EM Methods 

and Their Origins (Quick Over-View) 
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• First Method was First Order (FO) (late 1970s) 

– Statistical method that could simultaneously discern 
variability of measured levels of drug or drug response 
(residual variance) within a subject, and variability of 
PK/PD parameters between subjects (inter-subject 
variance). 

– Method could determine how population PK/PD 
parameters related to patient characteristics 

– Method could do this, even when there were few data 
points per subject. 

– FO analysis could be accomplished using the 
computing power and memory that was available at 
the time 

 

 

 

Historical Perspective: First Order Method 
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• First Order Conditional Estimation (FOCE) Method (Beal, 1992) 

– First order method was fast, but very approximate 

– Sometimes inaccurate assessments occurred if residual 
error and/or inter-subject variability were large 

– Conditional method, while also approximate, was more 
accurate for a larger variety of problems 

– In FOCE mixed effects modeling, an integral over all 
possible individual parameter values (etas, or random 
effects) is taken into consideration when determining the 
best fixed effects (thetas, omegas, and sigmas). 

– These integrations must be done for data of each individual 
separately. 

–  Such integrations can be computationally expensive, and 
take longer than FO method 

 

 

 

First Order Conditional Estimation Method 
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• Iterative Two Stage (deterministic expectation-maximization 

method, 1984) 

– Described by Steimer, Mallet, and Golmard, extended 
by Mentre and Gomeni, first implemented in P-Pharm 

– Approximate method that was able to analyze 
complex PK/PD problems with greater efficiency and 
incidence of success than FOCE 

– More accurate than FO, but not as accurate as FOCE 

 

 

More Recent Statistical Methods: 

Expectation-Maximization (EM) 



7 

• Monte Carlo Expectation-Maximization Methods (early 2000’s) 

– An exact method that was able to analyze complex PK/PD 
problems with greater incidence of success than FOCE 

– As in FOCE, the integral over all possible individual 
parameter values (etas, or random effects) is taken into 
consideration when determining the best fixed effects (thetas, 
omegas, and sigmas).  

– These integrations are done by Monte Carlo integration 
techniques.  This is called the expectation step. 

– Although the Monte Carlo expectation step can be 
computationally expensive, and/or highly stochastic, the 
update of the fixed effect parameters can be efficiently carried 
out if the statistical model is structured in a Phi/Mu structure.  
This update of the fixed effects is called the maximization 
step 

 

 

 

Monte Carlo EM Methods 
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• Monte Carlo Expectation-Maximization Methods, continued 

– More accurate than FOCE, especially for sparse data 

– Takes longer than FOCE for simple PK/PD problems 
(analytical), but more efficient than FOCE for complex 
PK/PD problems (ordinary differential equations) 

– Efficiency reduces considerably when model cannot 
be expressed in a particular fixed/random effect 
(Phi/Mu) format. 

– Can handle full Omega block models efficiently and 
with stability 

 

 

 

 

Monte Carlo EM Methods 
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• Determine the set of THETAs, OMEGAs, and SIGMAs that best 

fit the population data, considering all possible values of 

individual parameters or ETAs. 

• To do this, for each subject, an integration of the conditional 

density over all values of ETAs must be performed, for a given 

set of Thetas, Omegas, and Sigmas 

 

 

 

Goal of Non-Linear Mixed Effects Methods 
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Goal of Non-Linear Mixed Effects Methods 

For observed data, a predictive function may be evaluated using the 

individual PK/PD parameters, derived from fixed parameters  , and 

random variables  : 

      

Where  are “typical values”, and other fixed effects parameters, to 

produced predicted value ( ,i f   .  
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Goal of Non-Linear Mixed Effects Methods 

Often, the distribution of individual parameters   are modeled as a 

normal distribution: 
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The individual parameter density among the population ( , )ih |   is 

the probability that the particular  would occur for an individual, given 

mean typical value parameters i and its inter-individual covariance  .  

The distribution of η  is therefore centered about zero (0), and can be 
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Goal of Non-Linear Mixed Effects Methods 

For normally distributed data, a residual variance matrix V describes 

uncertainty of observed values: ( , )i iV f  .  The density can be 

expressed as 

 
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where ( il | y   is the individual data density, the probability of data 

iy occurring for individual i, given individual PK/PD parameters  , and 

fixed effect parameters  that are not mu modeled.   
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Goal of Non-Linear Mixed Effects Methods 

The joint density of data yi and   for an individual is the combination of 

the data density and individual parameter density among the 

population, to form the joint density: 

( | , ( ), ) ( ( ( ), )i i i ip l | h | y y                                           (0.1) 

This is the joint likelihood density of parameters  and data yi for a 

given individual.   
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Goal of Non-Linear Mixed Effects Methods 

Because  is unknown, the joint likelihood is integrated over all possible 

values of  for each individual, so that the “best” population 

parameters  and  are determined by taking into account the joint 

probability to an individual’s data over the entire parameter space of 

or equivalently, over all , rather than at just one particular location, 

such as at the individual’s best fit.   
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Goal of Non-Linear Mixed Effects Methods : 

 

                                               
We are therefore interested in evaluating the marginal density of yi for 

any given   and : 
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for each subject i.  The total marginal density for all m subjects is then 
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Goal of Non-Linear Mixed Effects Methods 

 

It is convenient to use the negative logarithm of the density, and refer to this 

as the objective function, for each individual: 

log( ( , | , , ) )i i iL p d



   y     

                                                

and for the total data set: 

To fit a model with mean population parameters θ and population variance 

 to data y, the negative logarithm of the marginal density is minimized, 

which is equivalent to maximizing the marginal density. 
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• When the individual’s joint density for data and individual 

parameters is normalized, we have the posterior, or conditional 

density: 

Goal of Non-Linear Mixed Effects Methods 

 

• Often, the predicted function f that appears in the data density is 

non-linear with respect to individual parameters (phi) 

• Therefore, while the data density is a normal distribution with 

respect to the data, and the individual parameter is normally 

distributed among the population, the conditional density is not 

normally distributed with respect to individual parameters 
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• This integration is computationally difficult to do 

• FOCE Evaluates the mode of the conditional density (most likely 

values of etas) and first order approximation of variances of etas 

• This approximate integral of the Gaussian (Normal) function 

centered at the mode of the conditional density with the 

approximate variance can be easily calculated. 

• This integral of the normal approximation serves as integrated 

objective function 

 

 

 

 

FOCE 



19 

• The integral of the normal function over all etas or individual 

parameter values is equal to the value of the normal function at 

the mode or peak, (the “height”) multiplied by the determinant of 

the variance-covariance matrix of the normal function (the multi-

dimensional “width”, so height x width=area): 

 

 

 

 

FOCE 

̂ =individual parameters at mode (peak) of posterior density 

V̂ =variance-covariance matrix of posterior density 
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Normal Density Serves as Approximation to 

Posterior Density in FOCE 
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• This linearized approximation of using the area of a  Gaussian 

function as a substitute for the true area under the poster 

density is sufficiently accurate when residual variance within 

subjects is small, and/or the non-linearity (equivalently, 

deviation from Gaussian) of parameter distribution of the 

PK/PD model is not large. 

 

 

 

 

 

 

FOCE Approximation 
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• To improve accurate assessment of area under the posterior 

density, Consider Importance Sampling, which: 

• Evaluates the conditional (posterior) mean and variance of 

individual parameters (etas) by Monte Carlo sampling 

(integration) (Expectation Step) 

• Gaussian function positioned near the mean or mode of the 

posterior is used as a proposal (sampling) density, then 

weighted according to posterior density, which is not truly 

normally distributed 

 

 

 

 

Importance Sampling EM: Expectation 
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Normal Density Serves as Proposal to 

Posterior Density in Importance Sampling EM 
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• Simple single iteration maximization steps update parameters 

– stable, and statistically proven to improve the objective function 

– Example: Average of conditional parameters among all individuals 
serves as update to a relevant fixed (theta) parameter 

– Variance of conditional parameters among all individuals serves as 
update to a relevant omega parameter 

• Population parameters converge towards the position of exact 

maximum likelihood 

• Accurate marginal density based objective function 

• Standard errors are rapidly obtained by inverting an information 

matrix constructed from Monte Carlo elements 

 

Importance Sampling EM: Maximization 
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• In practice, only those structural parameters (thetas)  

associated with typical values to individual parameters that 

do not change for that subject (not time/record dependent) 

can be efficiently evaluated by phi/mu modeling.  For 

subject i: 

Why is EM Efficient with Mu Modeling: 

Maximization Step 

)i i i   μ θ x η

( ,iN μ 
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• In such cases, the objective function may be easily 

improved by simple maximization steps. For example, if 

Why is EM Efficient with Mu Modeling: 

Maximization Step 

i μ θ

new
1

1ˆ ˆ
m

i i
im 

    

• Then the new theta that improves the objective function is 

evaluated as: 

1

1
ISAMPLE

R

i i r r
r

z d w R
R 

     

(maximization, for m subjects) 

(expectation) 
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• If a covariate model is used, for example: 

Why is EM Efficient with Mu Modeling: 

Maximization Step 

1 2=i ix  

1 2
ˆ ˆupdated simple regression analysis on ( )i ix     

• Then the new theta that improves the objective function is 

evaluated as: 

• If mu has linear relationship with thetas (as in above 

example), then the linear regression guarentees efficient 

improvement in objective function 

• If not linear relation, such as 

 1 2= log( )i ix  

• then the non-linear regression is less efficient in improving 

in objective function 
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EM methods are most efficient when they can be 

expressed in this particular fixed/random effect (Phi/Mu) 

format, in which population parameters (theta) are used 

to model the mean (Mu) of a normal distribution of 

individual parameters (Phi). 

 

Efficiency reduces when many population parameters 

are shared among subjects without inter-individual 

variability, that is, population parameter does not model 

a mean value to normally distributed individual 

parameters. 

 

 

Efficiency of EM Methods 
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For parameters not mu-modeled, two methods could be 

used: 

gradient method:  Requires creation of Monte Carlo first-

derivatives.  To speed up evaluation, only a subset of 

Monte Carlo samples from each subject need be used for 

evaluation (recommended by Robert Leary). 

Annealing method:  Temporarily Mu-model the parameter 

(that is, add inter-subject variability), then constrain the 

variance to ever smaller values with each iteration, until 

variance is 0. 

 

 

Efficiency of EM Methods 
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Why is EM Efficient with Mu Modeling: 

Maximization Step 

• Similarly, the new Omega that improves the objective 

function is evaluated as: 

(maximization) 

(expectation) 
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• The Omega symbols above represent the entire matrix of 

individual Omega elements. 
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Full OMEGA Blocks in EM Analysis 

• Full OMEGA blocks are more easily updated by EM methods than by 

FOCE.  

• Full  OMEGA blocks are preferred over diagonal Omegas in EM 

problems. 

• Having off-diagonal elements does not necessarily make EM methods 

less stable. 

• No need to fix off-diagonal elements to 0 even though SE is greater 

than estimate 

• If original analysis was performed with FOCE, and if off-diagonal 

element was fixed to 0 because FOCE had round-off error problems in 

estimation, or $COV step could not complete, allow off-diagonal to be 

estimated when doing EM. 

• Then, only if EM objective function is highly variable, or $COV step 

reports non-positive-definite issues, consider fixing off-diagonal 

elements back to 0. 
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• One variant of importance sampling is to use a 

random sampler that generates vectors of etas in a 

Quasi-random (Sobol Sequence) manner, rather 

than in a pure random fashion. 

• The quasi-random sample has a more even 

distribution across the multi-dimensional eta space 

than the usual pseudo-random number generator. 

• The effect is to reduce the stochastic noise by 2-10 

fold per N generated sample vectors. 

• Fewer samples are required for a desired stochastic 

noise level. 

Using Quasi-Random Importance Sampling 
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• Example: Two compartment model, with 5 data points per 

subject, 100 subjects. 

Importance sampling was performed using 300 random 

samples per subject. The STD of the set of objective function 

values of the last 10 iterations was 1.13: 
 iteration           29 OBJ=  -1144.36 

 iteration           30 OBJ=  -1146.20 

 iteration           31 OBJ=  -1145.48 

 iteration           32 OBJ=  -1144.12 

 iteration           33 OBJ=  -1146.41 

 iteration           34 OBJ=  -1144.54 

 iteration           35 OBJ=  -1143.63 

 iteration           36 OBJ=  -1146.96 

 iteration           37 OBJ=  -1146.15 

 iteration           38 OBJ=  -1145.96 

 

 

 

 

Using Quasi-Random Importance Sampling 
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Same problem performed with Sobol sequence sampling of 

300 per subject, and the STD of set of objective function 

values of the last 10 iterations was 0.49: 
 iteration            9 OBJ=  -1145.56 

 iteration           10 OBJ=  -1145.04 

 iteration           11 OBJ=  -1144.47 

 iteration           12 OBJ=  -1145.29 

 iteration           13 OBJ=  -1145.50 

 iteration           14 OBJ=  -1145.83 

 iteration           15 OBJ=  -1144.74 

 iteration           16 OBJ=  -1145.95 

 iteration           17 OBJ=  -1145.22 

 iteration           18 OBJ=  -1144.75 

• This is an improvement of 2.3 fold over the standard 

random sampling.  To get equivalent STD in standard 

random sampling, would need 300*2.32=1500 samples per 

subject. 

 

 

Using Quasi-Random Importance Sampling 
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• As in importance sampling, random samples generated from 

Normal proposal densities 

• Instead of always centered at mode (or mean) of the posterior 

density, proposal density is centered at the previous (p) sample 

position 

• New samples are accepted with probability W(φ)/W(φp) 

• The variance of proposal density is adjusted to maintain a 

certain average acceptance rate. 

• This method requires more elaborate sampling strategy, but is 

useful for highly non-normally distributed posterior densities 

 

SAEM: Markov Chain Monte Carlo (MCMC) 
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Normal Density Serves as Moving Proposal 

Density in MCMC 
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• In first mode (stochastic/burn-in) , SAEM evaluates an unbiased 

but highly stochastic approximation of individual parameters 

(semi integration, usually 2 samples per individual) 

• Population parameters are updated from individual parameters 

by single iteration maximization steps that are very stable, and 

statistically proven to improve the objective function 

• In second mode (reduced stochastic/accumulation), individual 

parameter samples from previous iterations are averaged 

together, converging towards the true conditional individual 

parameter means and variances 

 

MCMC Stochastic Approximation EM 
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• Leads to Population parameters converging towards the 

maximum of the exact likelihood 

• Objective function best obtained by a single iteration of 

importance sampling at final population parameter values 

 

MCMC Stochastic Approximation, continued 
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• Evaluates the conditional mode (not mean!) and first order 

approximation of the (expected) variance of parameters of 

individuals by maximizing the posterior density 

– This integration step is the same as in FOCE 

• Parameters updated from conditional modes (    ), and 

approximate individual variances (    ) 

 

 

 

 

• Parameters updated by single iteration maximization steps that 

are very stable (usually in 50-100 iterations) 

• For rich data, almost as accurate as FOCE, but much faster 

 

 

 

Approximate (Linearized) Likelihood EM 

Method: Iterative Two Stage 
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Normal Density Serves as Approximation to 

Posterior Density in ITS 
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• MC Importance Sampling EM (IMP): 

– Sparse (few data points per subject) or rich data 

– Complex PK/PD problems with many parameters 

• SAEM 

– Very sparse, sparse, or rich data 

– categorical data 

• Iterative Two Stage (ITS) 

– Rich data 

– Rapid, exploratory method 

• FOCE 

– Rich data 

– Many THETAS with no ETA’s associated with them 

– More accurate than ITS 

 

When to Use Each EM Method 
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• MC Importance Sampling EM (IMP) 

– Complex PK/PD problems with many parameters are 
rapidly evaluated compared to FOCEI 

– Sparse (fewer data points per subject than etas to be 
estimated) or rich data 

– Can be less accurate than SAEM with highly 
categorical data or very sparse data 

– Can track progress of improvement in true objective 
function with each iteration 

– Results can vary stochastically, typically by about 25% 
of SE 

– Can handle full OMEGA blocks well 

– May become less efficient when some or many thetas 
may not be MU modeled 

When to Use Each EM Method 
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• SAEM 

– categorical data 

– Very sparse, sparse, or rich data 

– Complex PK/PD problems with many parameters (may 
sometimes reach true objective function only within +/- 
10 units of optimum, and can take longer than IMP) 

– Cannot assess true objective function during its 
progress, must finish analysis with Importance 
sampling assessment of objective function 

– Results can vary stochastically, typically by about 25% 
of SE 

– Can handle full OMEGA blocks well 

– May become less efficient when some or many thetas 
may not be MU modeled 

When to Use Each EM Method 
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• Iterative Two Stage (ITS) 

– Rich data 

– Rapid, exploratory method 

– Can be used as pre-analysis to facilitate IMP or 
SAEM 

– Requires less fuss with adjusting options than 
SAEM or IMP 

– Results are highly reproducible to +- 4 digits 

– Can have large bias or instability for some 
problems 

– Can handle full OMEGA blocks well 

– Less efficient when some or many thetas may not 
be MU modeled 

When to Use Each EM Method 
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• FOCE 

– Rich and semi-rich data 

– Good for many THETAS with no ETA’s associated 
with them 

– More accurate than ITS 

– Requires less fuss with adjusting options than 
SAEM or IMP 

– Results are highly reproducible to +- 4 digits 

– Does not handle full Omega blocks as easily as 
EM 

– If convergence criterion reduced, then time of 
analysis can be reduced by 2-3 fold in some 
cases 

When to Use Each EM Method 
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• IMP 

For standard PK in which data is normally 
distributed (continuous data, such as from 
quantitative assays), and there are more data 
points per subject than etas to be estimated, the 
following settings (which are close to default) are 
usually sufficient to begin with: 

 random samples per subject=300 

     number of iterations=50-100 

 Normal density sampler 

    Acceptance rate of 0.4-1.0 

If stochastic noise of OFV is higher than 1-3 STD, 
increase number of samples per subject. Typically 
noise decreases by approximately N1/2 

 

 

How to Use Each EM Method (IMP) 



47 

Models in which the prediction function causes high degree 
of non-linearity on the etas (some PD models may do this),  
or as the data becomes more sparse (fewer data points per 
subject), or for large numbers of data below the quantifiable 
limit of the assay, or the observed data is non-normally 
distributed such as with categorical data, the posterior 
density becomes less Gaussian in shape and can have 
extended tails.  To reach widened tails in the distribution, do 
one or more of the following: 

 increase number of samples per subject  (1000-10000) 

 use t-distribution sampler with DF=1-4 

 Decrease acceptance rate (expanding sampler 

  coverage) to 0.1-0.2 

 

 

 

 

How to Use Each EM Method (IMP) 
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• SAEM 

For standard PK in which data is normally distributed 
(continuous data, such as from quantitative assays), and 
there are more data points per subject than etas to be 
estimated, the following settings (which are close to 
default) are usually sufficient to begin with: 

 random samples (chains) per subject=1-2 (may need 
more if there are fewer than 50 subjects) 

  number of burn-in iterations=200-300 

  number of accumulating iterations=200-300 

 

 

How to Use Each EM Method (SAEM) 
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Models in which the prediction function causes high degree 
of non-linearity on the etas (some PD models may do this),  
or as the data becomes more sparse (fewer data points per 
subject), or for large numbers of data below the quantifiable 
limit of the assay, or the observed data is non-normally 
distributed such as with categorical data, the posterior 
density becomes less Gaussian in shape.  To reach 
widened tails in the distribution, do at least: 

 increase number of samples per subject (3-10) 

and maybe: 

 number of burn-in iterations=500-1000 

  number of accumulating iterations=500-1000 

 

 

 

How to Use Each EM Method (SAEM) 
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If there are few subjects in the population analysis (<30 for 
example), then number of samples (chains) evaluated per 
subject should be increased to 5-10, so that the stochastic 
noise in assessing population parameters during the burn-in 
period is not too great. 

 

 

 

How to Use Each EM Method (SAEM) 


