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BACKGROUND

• Crossover pharmacokinetic (PK) trials

– Bioequivalence or interaction trials

• Approaches for analysis of these studies

– Non compartmental: many samples per subject (>10) ⇒ trial in healthy volunteers

– Nonlinear mixed effects models (NLMEM): few samples per suject ⇒ trial in patients

• Importance of choice of design in NLMEM

– Balance between number of subjects and number of measures/subject, choice of sampling times

– Impact on the study results (precision of parameter estimates, power of test)

• Design evaluation et optimisation

– Simulations : cumbersome method

– Population Fisher information matrix (MF )

* Calculation of MF for NLMEM [1,2] : implementation in PFIM [3,4,5]

* Not applicable for crossover trials

OBJECTIVES

1)To extend MF for NLMEM with inclusion of within subject variability (WSV) in addition to between sub-

ject variability (BSV) and discrete covariates changing between periods

2) To compute the expected power for the Wald test of comparison or equivalence and the number of sub-

jects needed (NSN) for a given power using the extension of MF

3) To implement these extensions in PFIM 3.2

4) To evaluate the relevance of these extensions by simulation

5) To apply these extensions to design a future crossover study showing the absence of interaction of a

compound X on the PK of amoxicillin in piglets

EXTENSION OF POPULATION FISHER INFORMATION MATRIX

• Notations

N subjects i = 1, ..., N

H periods h = 1, ..., H

C : set of discrete covariates c

Kc : set of categories k of c

– Design

* ξi h = vector of ni h sampling times for subject i at period h

* ξi = (ξi 1, ...,ξi h, ...,ξi H ) = elementary design of subject i

* Ξ= {ξ1, ...,ξi , ...,ξN } = population design

– NLMEM

Vector of observations of subject i at period h: yi h = f (φi h,ξi h)+ǫi h

ci h = covariate c of subject i at period h

* ǫi h = residual error ∼N (0,Σi h); Σi h = diag(σi nter +σslope f (φi h,ξi h))2

* φi h =µ exp(
∑

c∈C

∑

k∈Kc
βck

1ci h=k +bi +κi h)

µ = fixed effect for the reference category

βck
= fixed effect for the category k of c (=0 if k=reference)

}

→ θ = vector of all fixed effects

bi = random effect for subject i ∼N (0,Ω)

κi h = random effect for subject i at period h ∼N (0,Γ)

}

→ vi = vector of all random effects

* yi = vecteur of observations of subject i for all H periods

* Ψ= (θ′,λ′)′ = {fixed effects, variances of random effects and of residual errors}

• Extension of MF

– Elementary MF for subject i with elementary design ξi : MF (Ψ,ξi ) = E

(

−∂2l (Ψ,yi )

∂Ψ∂Ψ′

)

– Log-likelihood (l ) approximation using first-order Taylor expansion of the structural model around

the expectation of the random effects(=0)

yi
∼= f (g (θ,0),ξi )+

(

∂ f ′(g (θ, vi ),ξi )

∂vi

)

vi=0

vi +ǫi

– Expression of MF (Ψ,ξi ) : diagonal block matrix

⇒ Population Fisher information matrix : MF (Ψ,Ξ) =
∑N

i=1 MF (Ψ,ξi )

⇒ Prediction of standard errors (SE) of discrete covariates fixed or changing between periods from diag-

onal terms of M−1
F

• Computation of expected power using MF

– β: covariate effect

– Test of comparison

* Test H0 : {β= 0} vs. H1 : {β 6= 0}

* Computing power under H1, when β=β1 6= 0

· β1
Extension of MF

−→ Standard error SE(β1) [6]

· Pdi f f = 1−Φ

(

z1−α/2−
β1

SE(β1)

)

+Φ

(

−z1−α/2−
β1

SE(β1)

)

– Test of equivalence

* Test H0 : {β≤−δ ou β≥+δ} vs. H1 : {−δ<β<+δ} (in general δ= 0.2)

⇔ Schuirmann’s TOST H0,−δ : {β≤−δ} & H0,+δ : {β≥+δ} [7]

* Computing power under H1, when β=β1 ∈ [−δ,+δ]

· β1
Extension of MF

−→ Standard error SE(β1)

· Pequi = 1−Φ

(

z1−α−
β1+δ

SE(β1)

)

if β1 ∈ [−δ,0]; Pequi =Φ

(

−z1−α−
β1−δ

SE(β1)

)

if β1 ∈ [0,+δ]

where Φ = cumulative distribution function of N (0,1) and zq such as Φ(zq) = q

EVALUATION BY SIMULATION

• Pharmacokinetic model

PK parameters

φ= (ka,V ,C l )

– Crossover trials with 2 periods, 1 sequence

* Period 1 = treatment 1 = A + placebo

* Period 2 = treatment 2 = A + B

– Treatment effect on C l : βC l (interaction of B on A)

• Simulation

– 1000 trials with two designs and different values of βC l

Design n N βC l

rich (0.5,1,1.5,2,4,6,8h) 7 40 -0.2, 0, 0.1, 0.18, 0.2, 0.4

sparse* (0.5,2,6,8h) 4 40 -0.2, 0, 0.1, 0.18, 0.2, 0.4

* obtained by optimising the rich design of each period

• Evaluation method

– For 1000 data sets simulated with each design

* Estimation of parameters by SAEM algorithm [8,9] in MONOLIX 2.4 [10]

* Empirical SE = SEemp = sample estimate of the standard deviation from parameter estimates

* Observed power = proportion of simulated trials for which H0 is rejected

– By extension of MF

* Predicted SE = SEMF

* Predicted power from SE of treatment effect parameter

⇒ Comparison : simulations vs. predictions

RESULTS: RELEVANCE OF THE EXTENSION OF MF

• Prediction of standard errors

– Relative standard errors (RSE) of parameters – Boxplots of 1000 SE(βC l ) of each scenario
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• Prediction of power for the Wald test of comparison and equivalence
(α= 0.05 et δ= 0.2)
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Equivalence test

⇒ Correct predictions by the extension of MF for SE as well as for power

⇒ Similar results between rich design and reduced design

APPLICATION

• Designing a future study DAV2 [11] on the influence of X on the PK of amoxicillin in piglets

– DAV2 similar design as the simulation study : A = amoxicillin, B = compound X

– Objective of DAV2 : to show the absence of interaction of X on the clearance C l of amoxicillin

• Analysis of the previous study DAV1 (crossover, 16 subjects)
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• Application of the extension of MF implemented in PFIM

– Power of the equivalence test for N = 16 subjects

– Number of subjects needed (NSN) for a given power = 90% with an equivalence limit δ= 0.2

Design βC l Power(%) NSN

Rich (0.5,1,1.5,2,4,6,8,10,12) 0 41.0 68

Sparse (0.5,2,4,6) 0 40.5 70

⇒ Several piglets to show the absence of interaction of X on the amoxicillin PK in DAV2 with a good power

CONCLUSION

• Summary

– Relevance of the extension of MF in NLMEM for crossover trials

– Implementation in PFIM 3.2 (several periods, same elementary design at each period)
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– Studies analyzed through NLMEM can be performed with optimal sparse sampling designs

* requiring the knowledge of the model and its parameters

* allowing to reduce the number of samples per subject

⇒ Usefulness of PFIM as an efficient tool for design of bioequivalence/ interaction studies

• Perspectives

– Computation of MF without linearisation of model (linearisation : potential problems for complex mod-

els defined by differential equations)

– Different optimisation algorithms
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