PREDICTION OF PRECISION OF INDIVIDUAL PARAMETER ESTIMATES AND OF SHRINKAGE VIA THE BAYESIAN FISHER INFORMATION MATRIX IN NON-LINEAR MIXED-EFFECTS MODELS WITH APPLICATION IN PHARMACOKINETICS

François Combes^{1,2}, Sylvie Retout², Nicolas Frey³ and France Mentré¹

1. Univ Paris Diderot, Sorbonne Paris Cité, UMR 738, F-75018 Paris, France; INSERM, UMR 738, F-75018 Paris, France

Institut Roche de Recherche et Médecine Translationnelle, Boulogne-Billancourt, France
Pharma Research and Early Development, Translational Research Sciences, Modeling & Simulation, F. Hoffmann-La Roche Itd, Basel, Switzerland

CONTEXT

- ◆ Individual parameters in Non-Linear Mixed Effects Models (NLMEM)
 - Estimated by Bayesian methodology as Maximum A Posteriori (MAP)
 - -Used to predict response, select covariates and draw diagnostic plots
 - -Need high precision of estimation \rightarrow smallest Standard Errors (SE) on parameters
- \diamond Optimal design
 - Evaluate the informativeness of the design and its influence on SE through the Fisher information Matrix
 - Prediction of SE:
 - * Individual fitting \rightarrow Individual information Matrix of Fisher (IMF)
 - * Population fitting \rightarrow Population information Matrix of Fisher (PMF) [1]
 - * Individual Bayes fitting \rightarrow Bayesian information Matrix (BMF) [2]
 - -IMF and PMF already implemented in various softwares (PFIM, PopDES, PopED,...)
- \diamond Shrinkage of Random Effects (RE)
 - -Shrunk a posteriori distribution of estimated η towards the population mean

RESULTS

Simple PK model (Results for clearance only, similar for volume)

FIGURE 1: RSE for CL (%) predicted with IMF, BMF FO or BMF MC

- -BMF FO close to BMF MC values
- -RSE from BMF predictions below those from IMF or Ω
- Decrease of predicted RSE with increase of information

- -Occurs when few information is available for each patient
- -Problems in individual parameters used for modeling (toxicity, pharmacodynamics, ...) and therapeutic drug monitoring studies

OBJECTIVE

- 1. Explore relationship between Bayesian information Matrix and shrinkage
- 2. Evaluate by simulation prediction of individual parameters precision and shrinkage

MATERIALS AND METHODS

- ♦ Individual statistical model: $y = f(\theta, \xi) + \epsilon, \xi = \{t_1, ..., t_n\}, f(\theta, \xi)$: model
 - $-\theta = g(\mu, \eta)$: individual parameters Fixed effects $\mu = (\mu_1, ..., \mu_p)$ $\eta \sim N(0, \Omega), \ \Omega = diag(\omega_1^2, ..., \omega_p^2)$

 $g(\mu,\eta) = \mu + \eta \text{ or } g(\mu,\eta) = \mu e^{\eta}$ $-\epsilon \sim N\left(0, \Sigma\left(\theta, \xi\right)\right): \text{ residual error}$ $\Sigma\left(\theta, \xi\right) = diag\left(\left(\sigma_{inter} + \sigma_{slope} f\left(\theta, \xi\right)\right)^2\right)$

\diamond Design evaluation

- -Based on Rao-Cramer inequality: the inverse of the Fisher Information Matrix (MF^{-1}) is the lower bound of estimation variance
- For individual fitting $IMF(\theta,\xi) = F(\theta,\xi)^T \Sigma(\theta,\xi) F(\theta,\xi)$ with $F(\theta,\xi) = \frac{\partial f(\theta,\xi)}{\partial \theta^T}$
- Evaluation of Bayesian individual design

$$BMF\left(\xi\right) = -E_{\eta}\left(\frac{\partial^{2}log(p(\eta|y))}{\partial\eta\partial\eta^{T}}\right) = E_{\eta}\left(IMF\left(g\left(\mu,\eta\right),\xi\right)\right) + \Omega^{-1}$$

- $p(\eta|y)$ a posteriori distribution of η given y with known population parameters
- Two methods to approximate BMF:
- * Monte-Carlo (MC) simulation: simulation of η
- * First-Order linearization (FO):

$$BMF(\xi) = M^T F(\mu,\xi)^T \Sigma(\mu,\xi) F(\mu,\xi) M + \Omega^{-1}$$

FIGURE 2: Expected (W) vs observed shrinkage (Sh) for CL (%), for each scenario and design Number stands for the design and color for the scenario

FIGURE 3: Predicted with IBMF and estimated SE

- Similar values of estimated SE with NONMEM and MONOLIX
- -Predicted SE close to the estimated SE with some small differences with MONOLIX when high variance (CV 50%) of RE is used

✤ Illustration model

M = I for additive RE

 $M = diag(\mu_1, ..., \mu_p)$ for exponential RE

Prediction of shrinkage

- For linear mixed effects models $[3,4]:\widehat{\theta}_{MAP} = W(\xi) \mu + (I W(\xi)) \widehat{\theta}_{ML}$ With:
- * $W(\xi) = BMF(\xi)^{-1} \Omega^{-1} \widehat{\theta}_{MAP}$ and $\widehat{\theta}_{ML}$ Bayesian and Maximum Likelihood estimate respectively $^*W(\xi)$ quantifies the balance between prior and individual information \rightarrow proposed as a measure of predicted shrinkage
- \Rightarrow Individual prediction: *IBMF* computed for one patient (with random effects η)

 $IBMF(\eta,\xi) = \Theta^{T}F(g(\mu,\eta),\xi)^{T}\Sigma(g(\mu,\eta),\xi)F(g(\mu,\eta),\xi)\Theta + \Omega^{-1}$

 $\Theta = I$ for additive RE

 $\Theta = diag(\{\theta_1, ..., \theta_p\})$ for exponential RE

FIGURE 4: Expected (W) vs observed shrinkage (Sh)Number stands for the design (R = 10 samples per patient) and color for the parameter

- -W and observed shrinkage scatterplot close to the identity line
- Highest discrepancy on CL with 17%of difference between W and observed shrinkage for 2 samples per pa-

THE SIMULATION STUDY Γ

- ◆ Simple PK model inspired from Mentré *et al* [5], describing a one compartment model (V = 0.2)with elimination (CL = 0.5), with $\sigma_{inter} = 0.15$ Simulation of 1000 patients following the same design (varying from 5 to 2 samples per patient) with R 2.14 under several scenarios: variation of variance of RE and residual error
- ◆ **Illustration model** inspired from the structure of a published PK model of a real drug [6] with rounded fixed effect values and modified variabilities for simplification purposes Two-hours perfusions every 4 weeks at 8 mg/kg 2 compartments with linear and non-linear

Scenario	aa	ac	ea	ec	Ea	Ec
	Random effects					
Form	Add	Add	Exp	Exp	Exp	Exp
ω_V^2	0.0016	0.0016	0.04	0.04	0.25	0.25
ω_{CL}^2	0.01	0.01	0.04	0.04	0.25	0.25
	Residual error					
σ_{slope}	0	0.15	0	0.15	0	0.15

Fixed eff	ects	Random effects			
$CL \ (L/d)$	0.3	ω^2 0.09			
$V_2(L)$	4	Residual error			
Q(L/d)	0.15	$\sigma_{inter} (\mu g/mL) = 0.5$			
$V_2(L)$	3	σ_{clong} (%) 0.3			

– Predictions close to estimations

tient

- -Similar values of SE with NONMEM and MONOLIX
- -Higher distribution for SE on V_1 with MONOLIX

elimination and RE on CL, V_1 , V_2 and V_m Simulation of 1800 patients following the same design (varying from 10, 9, 4 or 2 samples per patient)

$V_m (mg/d)$ 6 $K_m (\mu g/mL)$ 2

Evaluation methods

- Individual parameters and their SE estimated with 2 softwares: * NONMEM 7.0 with MAXEVAL = 0 and FOCEI
- * MONOLIX 4.0 with population parameters fixed to their true values and SAEM algorithm
- -Observed shrinkage defined by Savic *et al* [7] on estimated $\hat{\eta}$:

$$Sh = 1 - \frac{Var(\widehat{\eta_i})}{\omega^2}, i = 1, ..., N$$

- -Predicted shrinkage computed as $W(\xi)$ using BMF FO
- -Predicted SE computed with IBMF using simulated η

FIGURE 5: Predicted and estimated SE along with SE with BMF FO

DISCUSSION

- \bullet FO computation of BMF adequate
- ♦ Development of new formula to predict shrinkage $(W = BMF^{-1}\Omega^{-1})$
- ◆ Further explorations needed on more "extreme" models with high variances of RE or of residual error Perspectives:
- Impact of precision of estimates on covariate determination
- -Link between shrinkage and power of test

¹ Retout, Duffull, Mentré. Comput. Methods Programs Biomed. (2001). ² Merlé, Mentré. J. Pharmacokinet. Biopharm. (1995). ³ Fedorov. Seminar on *Mixed models: design of experiments* (2011). ⁴ Verbeke, Molenberghs. Linear Mixed Models for Longitudinal Data (2000).

⁵ Mentré, Burtin, Merlé, van Bree, Mallet, Steimer. Drug Info. J. (1995). ⁶ Frey, Grange, Woodworth. J. Clin. Pharmacol. (2010). ⁷ Savic, Karlsson. The AAPS. J. (2009).

During this work, François Combes was supported by a grant from the Roche Pharma Research & Early Development group and the French government.