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Context

✦ Individual parameters in Non-Linear Mixed Effects Models (NLMEM)

– Estimated by Bayesian methodology as Maximum A Posteriori (MAP)

– Used to predict response, select covariates and draw diagnostic plots

– Need high precision of estimation → smallest Standard Errors (SE) on parameters

✦ Optimal design

– Evaluate the informativeness of the design and its influence on SE through the Fisher information Matrix

– Prediction of SE:

* Individual fitting → Individual information Matrix of Fisher (IMF )

* Population fitting → Population information Matrix of Fisher (PMF ) [1]

* Individual Bayes fitting → Bayesian information Matrix (BMF ) [2]

– IMF and PMF already implemented in various softwares (PFIM, PopDES, PopED,...)

✦ Shrinkage of Random Effects (RE)

– Shrunk a posteriori distribution of estimated η towards the population mean

– Occurs when few information is available for each patient

– Problems in individual parameters used for modeling (toxicity, pharmacodynamics, ...) and therapeutic
drug monitoring studies

Objective

1. Explore relationship between Bayesian information Matrix and shrinkage

2. Evaluate by simulation prediction of individual parameters precision and shrinkage

Materials and methods

✦ Individual statistical model: y = f (θ, ξ) + ǫ, ξ = {t1, ..., tn}, f (θ, ξ): model

– θ = g (µ, η): individual parameters
Fixed effects µ =

(
µ1, ..., µp

)

η ∼ N (0,Ω), Ω = diag
(
ω21, ..., ω

2
p

)
g (µ, η) = µ + η or g (µ, η) = µeη

– ǫ ∼ N (0,Σ (θ, ξ)): residual error

Σ (θ, ξ) = diag
((

σinter + σslopef (θ, ξ)
)2)

✦ Design evaluation

– Based on Rao-Cramer inequality: the inverse of the Fisher Information Matrix (MF−1) is the lower
bound of estimation variance

– For individual fitting IMF (θ, ξ) = F (θ, ξ)T Σ (θ, ξ)F (θ, ξ) with F (θ, ξ) =
∂f(θ,ξ)
∂θT

– Evaluation of Bayesian individual design

BMF (ξ) = −Eη

(
∂2log(p(η|y))

∂η∂ηT

)
= Eη (IMF (g (µ, η) , ξ)) + Ω−1

p (η|y) a posteriori distribution of η given y with known population parameters

– Two methods to approximate BMF :

* Monte-Carlo (MC) simulation: simulation of η

* First-Order linearization (FO):

BMF (ξ) = MTF (µ, ξ)T Σ (µ, ξ)F (µ, ξ)M + Ω−1

M = I for additive RE M = diag
(
µ1, ..., µp

)
for exponential RE

✦ Prediction of shrinkage

– For linear mixed effects models [3,4]:θ̂MAP = W (ξ)µ + (I −W (ξ)) θ̂ML
With:

*W (ξ) = BMF (ξ)−1Ω−1 θ̂MAP and θ̂ML Bayesian and Maximum Likelihood estimate respectively

*W (ξ) quantifies the balance between prior and individual information → proposed as a measure of
predicted shrinkage

✦ Individual prediction: IBMF computed for one patient (with random effects η)

IBMF (η, ξ) = ΘTF (g (µ, η) , ξ)T Σ (g (µ, η) , ξ)F (g (µ, η) , ξ) Θ + Ω−1

Θ = I for additive RE Θ = diag
(
{θ1, ..., θp}

)
for exponential RE

The simulation study

✦ Simple PK model inspired from Mentré et al

[5], describing a one compartment model (V = 0.2)
with elimination (CL = 0.5), with σinter = 0.15
Simulation of 1000 patients following the same
design (varying from 5 to 2 samples per patient)
with R 2.14 under several scenarios: variation of
variance of RE and residual error

Scenario aa ac ea ec Ea Ec

Random effects

Form Add Add Exp Exp Exp Exp

ω2

V 0.0016 0.0016 0.04 0.04 0.25 0.25

ω2

CL 0.01 0.01 0.04 0.04 0.25 0.25

Residual error

σslope 0 0.15 0 0.15 0 0.15

✦ Illustration model inspired from the structure
of a published PK model of a real drug [6] with
rounded fixed effect values and modified
variabilities for simplification purposes
Two-hours perfusions every 4 weeks at 8 mg/kg
2 compartments with linear and non-linear
elimination and RE on CL, V1, V2 and Vm
Simulation of 1800 patients following the same de-
sign (varying from 10, 9, 4 or 2 samples per patient)

Fixed effects Random effects

CL (L/d) 0.3 ω2 0.09

V2 (L) 4 Residual error

Q(L/d) 0.15 σinter (µg/mL) 0.5
V2 (L) 3 σslope (%) 0.3
Vm (mg/d) 6
Km (µg/mL) 2

✦ Evaluation methods

– Individual parameters and their SE estimated with 2 softwares:

* NONMEM 7.0 with MAXEVAL = 0 and FOCEI

* MONOLIX 4.0 with population parameters fixed to their true values and SAEM algorithm

– Observed shrinkage defined by Savic et al [7] on estimated η̂:

Sh = 1−
V ar(η̂i)

ω2 , i = 1, ..., N

– Predicted shrinkage computed as W (ξ) using BMF FO

– Predicted SE computed with IBMF using simulated η

Results

✦ Simple PK model (Results for clearance only, similar for volume)

Figure 1: RSE for CL (%) predicted with IMF , BMF FO or BMF MC

–BMF FO close to BMF MC values

– Decrease of predicted RSE with increase of in-
formation

– RSE from BMF predictions below those from
IMF or Ω

– Similar values of observed shrinkage
with NONMEM and MONOLIX

– Scatterplot close to the identity line

Figure 2: Expected (W ) vs observed shrinkage (Sh) for CL (%), for each scenario and design
Number stands for the design and color for the scenario

Figure 3: Predicted with IBMF and estimated SE

– Similar values of estimated SE with NONMEM
and MONOLIX

– Predicted SE close to the estimated SE with
some small differences with MONOLIX when
high variance (CV 50%) of RE is used

✦ Illustration model

– Similar values of observed shrinkage
with NONMEM and MONOLIX

–W and observed shrinkage scatter-
plot close to the identity line

– Highest discrepancy on CL with 17%
of difference between W and ob-
served shrinkage for 2 samples per pa-
tient

Figure 4: Expected (W ) vs observed shrinkage (Sh)
Number stands for the design (R = 10 samples per patient) and color for the parameter

– Predictions close to estimations

– Similar values of SE with NONMEM and
MONOLIX

– Higher distribution for SE on V1 with MONOLIX

Figure 5: Predicted and estimated SE along with SE with BMF FO

Discussion

✦ FO computation of BMF adequate

✦ Development of new formula to predict shrinkage (W = BMF−1Ω−1)

✦ Further explorations needed on more ”extreme” models with high variances of RE or of residual error

✦ Perspectives:

– Impact of precision of estimates on covariate determination

– Link between shrinkage and power of test
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