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Multiple sclerosis (MS) is a prototypic autoimmune disease which affects the central
nervous system (CNS) with a relapsing-remitting symptomatology [1]. A clinical
relapse in MS reflects an acute focal inflammatory event in the CNS that disrupts
neural conduction by damaging myelinated axons [2]. Such inflammatory events are
evident in T1-weighted MRI recordings as contrast enhancing lesions (CELs).

Observed CEL dynamics are highly unpredictable and characterized by intra- and
inter-patient variability. Their distributions along time have not been associated with
any specific pattern or precipitator [2]. For the appropriate design of future longitudinal
studies and clinical trials, it would be relevant to know the distribution of new CELs
longitudinally developed by MS patients over the follow up period. In this study, we fit
several discrete distribution models to CEL dynamics observed in nine RRMS patients
undergoing monthly MRI for 48 months.
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Figure 1. Number of contrast-enhancing lesions (CELs).
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Figure 2. Variance versus mean of number of CELs. Observed data (dots); identity line (black). A. Variance vs mean of
number of CELs observed in each patient with a 12 months time period window. B. 24 months time period window. C. 48
months time period window.
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Figure 3. Visual Numerical Predictive Check (VNPC). Different dynamic descriptors
were calculated for the observed data (black solid line) and the simulated data from
the different selected models (dashed lines). Those descriptors were evaluated at
different percentiles from 5th to 95th with an increasing step of 5.

Discrete distribution models for relapsing-remitting dynamics 
observed in Multiple Sclerosis 

Patients and MRI scans. Nine patients with MS were sequentially enrolled (never
treated with immunomodulatory or immunosuppressive drugs, except during a clinical
relapse). The MRIs were monthly performed on a 1.5-T magnet and the number of
CELs on T1-weighted post-contrast scans was identified by experienced neurologists
and radiologists (Fig1).

Data analysis. Analyses were
performed using NONMEM
VII. Model evaluation was
based on the comparison of
several dynamic descriptors
calculated for both raw and
simulated data. The model
selection was based on the
objective function provided by
NONMEM, which corresponds
approximately to -2LL [-
2xlog(likelihood)], parameter
estimate precision, and the
reproducibility of important
dynamic descriptors.

Table I. Explored models. θ - model parameters;  - distribution variance

MODELS ‐2LL(ΔPS)

θλ λ
0.744 0.442

θλ1 θλ2 λ
0.932 2.76 0.542

θλ0 θPDV λ0 PDV
1.18 0.418 0.562 0.187

θλ0 θPDV θPPDV λ0 PDV PPDV
1.03 0.388 0.124 0.501 0 0.164

θλ0 θPDV θPPDV θPPPDV λ0 PDV PPDV PPPDV
0.956 0.396 0.0974 0.0595 0.487 0.143 0 0

θλ1 θλ2 θPM λ1 λ2
2.72 1.81 0.413 0.529 1.89

θλ1 θP0 λ1
2.4 0.0375 0.91

θλ θdisp λ
1.53 0.393 0.663

θλ0 θdisp θPDV λ0 PDV
0.902 0.371 0.232 0.451 0.0932

θλ0 θdisp θPDV θPPDV λ0 PDV PPDV
0.742 0.347 0.121 0.23 0.365 0.058 0

θλ θOVDP λ OVDP
2.32 0.254 0.898 0.829

θλ θOVDP θP0 λ OVDP
2.32 0.254 0 8.98 8.29

θλ θOVDP θPDV λ OVDP wPDV
1.11 0.161 0.462 0.524 0 0.155

θλ θOVDP θPDV θPPDV λ OVDP PDV PPDV
0.94 0.155 0.43 0.141 0.44 0 0.121 0

θλ θOVDP θPDV θPPDV θPPPDV λ OVDP PDV PPDV PPPDV
0.817 0.157 0.448 0.104 0.0955 0.401 0 0.0849 0 0

PARAMETERS

1654.96 (413.761)

1758.92 (-309.796)

1758.63 (-310.095)

 PS model

PMAK1

PMAK2

nested PMAK2

nested nested PMAK2

PMIX

ZIP

GP

GP_PMAK2

GP_nested_PMAK2

1711.49 (-357.231)

1867.23 (-201.493)

2036.40 (-32.324)

1808.41 (-260.313)

1665.50 (-403.219)

2068.725

2001.0	(‐67.55)

1725.51 (-343.212)

1713.88 (-354.836)

1642.85 (-425.868)

1634.36 (-434.357)

1630.77 (-437.95)

ZINB

NB

NB_nested nested PMAK2

NB_nested PMAK2

NB_PMAK2

Models for count data. The number of CELs occurring every month is a discrete response variable.
Experience modeling this kind of count data has been previously applied to the analysis of
anticonvulsants [4], or epileptic seizures [5] among others. These models are based mainly on a Poisson
distribution model. In its simplest version, the Poisson model has only one parameter  (the mean
number of counts in a given time period) and assumes two restrictions:  is equal to the variance of the
data and the number of counts occurring in non-overlapping intervals of time is assumed independent.
However, many counting outcomes show (i) bigger or smaller variability than that predicted by the
Poisson model, a phenomenon called overdispersion or underdispersion respectively (Fig. 2) and (ii)
markovian features. Therefore, other discrete distribution models should be explored.
Fifteen models based on 7different probability distributions were explored: Poisson model [PS] (eq. 1, 3),
Poisson model with Markov elements [PMAK1 (eq. 1, 4), PMAK2, nested PMAK2 (eq. 1, 5), nested
nested PMAK2] , Poisson model with mixture distribution [PMIX], Zero-Inflated Poisson model [ZIP],
Generalized Poisson model [GP, GP PMAK2, GP nested PMAK2], Negative Binomial model [NB (eq. 2,
3), NB PMAK2 (eq. 2, 4), NB nested PMAK2 (eq. 2, 5), NB nested nested PMAK2] and Zero-Inflated
Negative Binomial model [ZINB].
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Figure 4. Probability CEL distribution. Observed data (A) versus the
probability distribution of simulated data (B) generated by the selected
model (NB nested PMAK2).

A very significant drop in the -2LL [-2×Log
(Likelihood)] was observed when a first
order markov element (t-1) was
incorporated (eq.4). When a second order
markov element (t-2) was included (eq. 5),
the drop was still significant (table I).
Interestenly, θPDV was always bigger thant
θPPDV. The same pattern was observed,
θPDV > θPPDV > θPPPDV, when a third order
markov element (t-3) was signficant
although the improvement was not
significant.

Figure 5. Variance versus mean of number of
CELs. Observed data (blue dots) and simulated
data (grey points) generated by the selected NB
nested PMAK2 model. Variance and mean of
number of CELs in each patient (observed –
simulated) were calculated using 12 months time
period window.

Selected model. Based
on the number of model
parameters, the -2LL
values showed on table I,
and the goodness of
VNPC (Fig. 3), the
selected model was the
negative binomial with 
affected each time t by
the observations of the 2
previous time points, t-1
& t-2: NB nested PMAK2.

The natural history CEL dynamics is highly variable intra- and inter-patients, being its pattern highly unpredictable. In this study we analyzed the best statistical model fitting
the distribution of CELs. Significant improvements were observed in the probability distribution models when the information about what happened in the two previous
months was incorporated, although the importance of these previous observations seems to be diluted along the disease course. In the future, mechanistic elements, as
balance between effector and regulatory T cell, will be incorporated [6] in order to identify latent variables that explain variations in the parameter .

where  could be,


