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INTRODUCTION

OBJECTIVES

PFIM 3.2

JOINT PKPD MODEL OF WARFARIN

To illustrate the use of PFIM Interface 3.1 and PFIM 3.2 on warfarin PKPD

CONCLUSION

• PFIM Interface 3.1 and PFIM 3.2  freely  available at  www.pfim.biostat.fr

• Great potential of these tools to evaluate and/or optimize designs :

– for multiple response models
– for more complex models quantifying the influence of discrete covariate and/or   

inter-occasion variability. 

REFERENCES

• Nonlinear mixed effect modeling or population analysis

– pharmacokinetic (PK) /pharmacodynamic (PD) data 
• Population analyses often based on limited sampling strategy

– ethical and / or financial reasons
• Methodology developed to ensure informative population design

– based on the Fisher information matrix (MF)
– expression of MF using a first order Taylor expansion of the model

• Implementation in a R function PFIM [1]
– R function for population design evaluation and optimization

• Recent extensions of PFIM (released in March 2011)

– for multiple response models [2]

→ Implementation in a new interface version PFIM Interface 3.1 
– for models with parameters quantifying influence of discrete covariates [3]

– for models including within-subject variability [4]

→ Implementation in a new R script version PFIM 3.2 (last version PFIM 3.2.2)

=> Other features for both versions

– inclusion of libraries of PK and PD models with their documentation
– computation of the block or the complete MF

Joint PKPD design on warfarin

• Evaluation of the empirical design  

– one group of 32 subjects 

– 13 sampling times for PK and 7 sampling times for PD 

• Design optimization with the Federov-Wynn algorithm

– 32 subjects with only 5 sampling times per subject (common to both responses) 

– sampling times from empirical design (PK + PD)

60Wild genotype (ref)
log(0.5)=-0.69

or log(0.8)=-0.22
40Mutant genotypes

CLCYP2C9

β
Proportions of subjects
in each category (%)

Categories
Parameter
Associated

Covariate

60Wild genotype (ref)
log(0.5)=-0.69

or log(0.8)=-0.22
40Mutant genotypes

CLCYP2C9

β
Proportions of subjects
in each category (%)

Categories
Parameter
Associated

Covariate

Pharmacogenetic on warfarin PK

• Single nucleotide polymorphism (SNP) CYP2C9 

– SNP on the gene of a cytochrome involved in the warfarin metabolism

– influence of the genetic covariate on the clearance

clearance decrease of 50% for subjects with a mutant genotype

• Evaluation of the optimized PK/PD design with the effect of the genetic 

covariate on clearance

– predicted power of the comparison Wald test (type I error=5%)

– number of subjects needed (given power=90%)

Table 1. Covariate effect parameters

Interaction of drug X on warfarin PK in crossover  trial

Planification of a new study to assess the absence of interaction 

of drug X on warfarin ka

– two-period, two-sequence balanced crossover trial

– inter-occasion variability on ka: γ²ka=0.3 (CV=55%)

– expected effect of the co-medication on ka: β=log(1)=0

• Evaluation of the empirical PK design

– 32 subjects

– sampling times

0.5, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96 and 120 hours

– Predicted power of the bioequivalence Wald test (type I error=5%)

– Number of subjects needed (given power=90%)

Standard error and RSE 
of the co-medication covariate effect 

on ka

90% confidence interval of 
the covariate effect

Expected power and number of 
subjects needed for the 

bioequivalence Wald test

Standard error and RSE 
of the inter-occasion variability

Covariate model 

(W=warfarin, 

X=warfarin+drug X)

Figure 3. Empirical design evaluation output
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Table 2. Results on genetic covariate effect

Empirical design (672 obs) Optimal design (320 obs)

Figure 1. Empirical design versus optimal design Figure 2. Comparison of predicted RSE for fixed effects (%)

Optimal
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Optimal
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• PK:  total racemic warfarin plasma concentration 

– single oral dose of 100 mg

– one compartment model, first order absorption and elimination

– exponential modeling of the random effects

PFIM Interface 3.1
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Figure 4. Empirical design evaluation output

• PD: effect on prothrombin complex activity (PCA)

– turnover model with inhibition of the input

– exponential modeling of the random effects

�Relative standard errors (RSE) in the 
same range for the fixed effects

� 2.1 less samples with optimal design 
than empirical design


