Microdialysate-corrected mid-interval model versus microdialysate-based integral model – **Population pharmacokinetics of levofloxacin in peripheral tissues**

A. Schaeftlein^{1,2}, A. Solms^{2,3}, M. Zeitlinger⁴, W. Huisinga³, C. Kloft¹

¹Institute of Pharmacy, Freie Universitaet Berlin, Germany ²and Graduate Research Training Program PharMetrX, Germany ³Institute of Mathematics, University of Potsdam, Potsdam, Germany ⁴Medical University Vienna, Vienna, Austria

Background and Objectives

Microdialysis (µD) has become the method of choice to determine unbound interstitial fluid (ISF) concentration especially of antiinfectives in peripheral tissues (PT) [1]. The interval based sampling method requires the correction of the measured microdialysate concentrations (C_{uD}) by the relative recovery (RR). The aim of this analysis was to compare two population PK modelling approaches with respect to descriptive and predictive performance for C_{uD} of levofloxacin (LEV). A second objective was to investigate covariates (demographics, clinical chemistry, disease severity) on the PK of LEV, particularly those possibly effecting the distribution of LEV in ISF.

Materials and Methods

Patients/Study

- LEV measurements: Plasma and µD concentrations in adipose and muscle ISF (n=39, Tab. 1) from 5 clinical trials [2-4]
- Treatment: 500 mg LEV once daily
- Sampling scheme: rich data situation especially for the disposition phase (0-8 h) (Fig. 1)

0 0.33 0.66 1 1.33 1.66 2 3 4 5 6 7 8 9 10 12 14

Figure 1. Sampling scheme of LEV for plasma (n=39), ISF of adipose (n=34) and muscle thigh (n=18).

Table 1. Patients characteristics of n=39 study participants

Covariate	[Unit]	Median (range)*			
Age	[y]	61 (23–89)			
Sex	[% men]	82			
Weight	[kg]	75.0 (51.0–120)			
Height	[m]	1.70 (1.54–1.87)			
Albumin	[g/L]	22.4 (18.0–57.0)			
CLCR	[mL/min]	82.1(37.3–146)			
*population: healthy volunteers $(n=7)$ lung patients $(n=5)$ sentic patients $(n=7)$					

patients with coronary bypass (n=12) and soft tissue patients (SOFT)(n=8)

Population PK modelling approaches

Comparison of 2 approaches (Tab. 2) using NONMEM[®] 7.2:

- \succ Microdialysate-corrected mid-interval (MCM) model: C_{uD} corrected by RR prior to the data analysis, assigning the corrected C_{uD} to the mid point of the sampling interval (Fig. 2)
- Microdialysate-based integral (MBI) model [5]: simultaneous analyses of RR and C_{uD} data and assigns C_{uD} as an integral over time to the end of the sampling interval (Fig. 2) $\mathsf{C}_{\mathsf{\mu}\mathsf{D},\mathsf{ad}\mathsf{i}}$

Figure 2. Microdialysate-corrected mid-interval (MCM) model (blue) and microdialysate-based integral (MBI) model (green) [5].

Selection criteria for the final base model:

 \succ Akaike information criteria (AIC), plausibility and precision of parameter estimates, GOF plots and visual predictive checks (VPCs) (30th/70th percentile, n=1000)

Covariate selection based on:

> OFV, clinically relevant influence on the PK, ability to explain interindividual variability (IIV) on PK parameters.

Table 2. Comparison of the 2 investigated models

MCM Model	MBI model		
 Data transformation prior to the data analysis → more assumptions and loss of 	 denotes the integral over the dialysate time interval → no assumption regarding time 		
 mid point of the sampling interval → error regarding the sampling time 	 Simultaneous analysis of all measured data → Uncertainty and variability recognised 		

Results

> No difference between infected and healthy s.c. ISF

- were observed \rightarrow pooling of the data in the model comparison possible (Fig. 3)
- > PK parameter estimates of the MBI model were in better agreement with published ones [6], also revealing higher precision in comparison to the MCM model (Tab.
- Lower AIC for MBI model (AIC: -1555) in comparison to MCM (AIC: 1582) model indicates a better model fit
- \succ In contrast to the MCM model the MBI model adequately described the concentration-time profiles in both ISF of PT (Fig. 4)
- \succ VPC (Fig. 5) demonstrated that predictive performance for MCM was worse for ISF_{muscle}, compared to the predictions of the MBI model
- > Albumin (marker for the colloid osmotic pressure in the plasma compartment) significantly influenced intercompartmental CL (plasma to adipose ISF) explaining ~20% of IIV in CL (Tab. 4)

- Q2 indicated that albumin-dependent protein binding of LEV is negligible for the distribution of LEV
- > Additionally CLCR being a marker for renal function and disease severity (septic>>soft tissue infections patients) showed an impact on CL of LEV explaining 20% of IIV (Tab. 4)

Table 3. Final parameter estimates of the MCM (upper panel) and MBI (lower panel) model. RSE% based on nonparametric bootstrap (n=1000). Green: Parameter estimates associated with the retrodialysate process.

Para [unit	imeter t]	Estimate	%RSE	Parameter [unit]	Estimate	%RS
Fixed-effects parameters			Interindivia	Interindividual variability, %CV		
CL	[L/h]	6.31	11	ωCL,	63.3	39
V_1	[L]	7.91	35	ωV_1	131	43
Q	[L/h]	71.7	27	ωV_2	42.4	55
V_2	[L]	46.0	19	ωV_3	75.5	55
Q_2	[L/h]	12.9	86	ωV_4	99.2	27
V_3	[L]	14.4	90	ωQ_2	121	38
Q_3	[L/h]	9.23	47	Residual v	Residual variability, %CV	
V ₄	[L]	16.7	56	σ_{prop}	32.4	14

Para [uni	ameter t]	Estimate	%RSE	Parameter [unit]	Estimate	%RSE
Fixed-effects parameters			ωV ₁	60.1	26	
CL	[L/h]	6.78	6.9	$ωV_2$	82.8	34
V_1	[L]	16.9	10	ωV_3	73.7	38
Q	[L/h]	41.6	21	ωV₄	74.2	33

Figure 4. Goodness of fit of the MCM (left panel) and MBM (right panel) model

Table 4. Covariates meeting the selection criteria

Covariate	[unit]	Estimate	Explained IIV	
relation			Absolute	Relative
CL_CLCR	1/mL/min	1.16%	11%	30%
CL_LUNG	-	-26.7%	9.0%	25%
CL_SEPS	-	-51.5%	9.0%	25%
CL_CBP	-	-17.8%	9.0%	25%
CL_SOFT	-	-7.44%	9.0%	25%
Q ₂ _ALB	1/g/L	7.54%	20%	19%

CLINICAL PHARMACY

References [1] Plock N et al. (2005), [2] Bellmann R et al. (2003), [3] Zeitlinger M et al. (2003), [4] Zeitlinger M et al. (2007), [5] Tunblad K et al. (2004), [6] Drusano GL. et al. (2002)

Conclusion

The MBI modelling approach showed the better descriptive and predictive performance compared to the MCM model and is therefore preferable for predicting additional non-investigated time-points or scenarios. This modelling approach enabled the differentiation between µDspecific processes (retrodialysis, µD) and physiologically-based (ADME, PBPK) distribution of LEV in humans. Albumin-dependent binding of LEV is negligible for the distribution of LEV in ISF of PT. Based on these results, more mechanistically-motivated models will be developed to explain the distribution of antiinfectives in ISF of PT.