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Introduction

Target-Mediated Drug Disposition: 
• Binding to the target influences drug distribution and/or elimination;
• Most relevant for biologics;
• Many different classes of biologics are known to have TMDD:

monoclonal antibodies;- monoclonal antibodies;
- cytokines, growth factors;
- fusion proteins;
- antibody-small molecule drug conjugates;
- hormones and metabolic factors;

• Most TMDD experience is with monoclonal antibodies (immunoglobulins)Most TMDD experience is with monoclonal antibodies (immunoglobulins).
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Properties of Biologics that are 
I t t f TMDD M d liImportant for TMDD Modeling

Most biologics:  
• Designed to be highly specific; act by binding to a specific target;Designed to be highly specific; act by binding to a specific target; 
• PK is often influenced or even dominated by this binding; 

Linear clearance of biologics: 
• Dominant at high concentrations when the target mediated pathway is• Dominant at high concentrations when the target-mediated pathway is 
saturated; 
• Catabolism (for large molecules, e.g. whole IgG antibodies) or 
• Renal filtration (for smaller molecules e g antibody fragments);Renal filtration (for smaller molecules, e.g. antibody fragments); 

Target-mediated clearance:
• Most visible at low concentrations;
• R lt i f t th li li i ti• Results in faster than linear elimination; 
• Internalization of cell surface receptors (for membrane-bound targets) 

followed by endocytosis;
• Catabolism (for soluble targets);
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Catabolism (for soluble targets);
• Increases with increase of the endogenous target concentration.



TMDD Timeline
1994: TMDD idea/term was introduced by Gerhard Levy  [Pharmacologic 
target-mediated drug disposition, Clinical Pharmacology & Therapeutics (1994) 
56:248-252]
2001 TMDD i f l d b D M d Bill J k [JPP2001: TMDD equations were formulated by Don Mager and Bill Jusko [JPP 
(2001) 28: 507-532]
1994-2010:
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TMDD model
Red: input; Green: amount; Black: rate constantsRed: input;      Green: amount;      Black: rate constants
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Characteristic Concentration-Time Course Following IV bolus dose
Black: Dose=400;      Red: Dose=650;        Green: Dose = 1000.

LLOQ
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TMDD equations
F l t d b M d J k [JPP (2001) 28 507 532]

;Ak
dt

dA
da

d −=

Formulated by Mager and Jusko [JPP (2001) 28: 507-532]

;)()(
V
AkRCkRCkCkk

V
AktIn

dt
dC
dt

T
tpoffonptel

da ++⋅−+−
+

=

;

dR

AkVCk
dt

dA
Ttppt

T −⋅=

;deg

dRC

RCkRCkRkk
dt
dR

offonsyn +⋅−−=

.)( int RCkkRCk
dt

dRC
offon +−⋅=

Initial conditions:

QuantPharm LLC 7

./)0(;0)0(;0)0(;/)0(;)0( deg21 kkRRCAVDCDFA synTCSCd =====



Main assumptions
Th d t t bi di i i l ( t ti ll t i ) t• The drug-target binding is a simple (not cooperative or allosteric) one-to-one 

binding  process with only one type of drug-target complex produced;

• The drug is highly specific and does not bind to any other target; 

• The drug-target binding occurs only in the central but not in the peripheral 
(tissue) or depot (lymphatic system) compartments; 

d di ib i i i li d i d ib d b i• Free drug distribution to tissues is linear and is described by inter-
compartment rate constants; 

• Target and drug-target complex do not diffuse to the peripheral compartment;g g g p p p p

• Recycling of the target does not occur in the elimination process of the drug-
target complex; 

• Influence of the immune response (such as appearance of binding and/or 
neutralizing antibodies) is negligible; 

• Target production and degradation rates are constant and do not depend on 
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the drug or target concentrations.



Typical ranges of parameters for 
therapeutic monoclonal antibodiestherapeutic monoclonal antibodies

Conversions assume 150 kDa molar weight. Information concerning target 
parameters (kdeg, kint, ksyn, Rmax) is difficult to find, sparse and not very reliable. The 
table contains approximate ranges cited in the literaturetable contains approximate ranges cited in the literature. 

Parameter Customary units Re-normalized units Conversion Factor
Dose 1-500 mg 10-3000 nmol 1 mg = 6.7 nmol
CL, Q     10-100 mL/hr 0.24-2.4 L/day 1 mL/hr=0.024 L/day, Q y y
Vp, Vt 3-6 L
FSC 0.3-1
ka 0.2-1.5 1/day
t SC 1-8 daystmax 1 8 days
kon 104 – 106 1/(Ms) 1-100 1/(nmol/L)/day 105/(Ms) = 8.64 

1/(nmol/L)/day
koff 10-6 – 10-3 1/s 0.1-100 1/day 10-3 1/s = 86.4 1/day
KD=koff/kon 1-100 nmol/L
kint soluble similar to kel 0.01-0.2 1/day

membrane similar to kdeg 5-100 1/day
ksyn 1-2 nmol/L/day
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kdeg 1-150 1/day
Rmax=  ksyn / kdeg 1-104 pmol/L 10-3-10 nmol/L



Problems with the TMDD equations
• Include processes of very different scales: binding (minutes to an hour)• Include processes of very different scales: binding (minutes to an hour), 

target-turnover (hours), elimination (days to weeks); 

• Binding is much faster than the other processes: kon is very large relative 
h hto the other rate constants; 

• Stiff differential equations; 

• Typical sampling schedules do not provide enough information to 
estimate binding parameters;

• Imprecise parameter estimates, especially for binding and target 
turnover parameters;

• I t bilit f th d l (d d i iti l diti )• Instability of the model (dependence on initial conditions);

• Long run time (weeks for a reasonable-size data set)
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Long run time (weeks for a reasonable-size data set). 



Concentration-time course following IV bolus dose
Black: Free Drug (C)      Red: Free Target (R)        Green: Complex (RC)

KON = 0.1
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Concentration-time course following IV bolus dose
Black: Free Drug (C)      Red: Free Target (R)        Green: Complex (RC)

KON = 1
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Concentration-time course following IV bolus dose
Black: Free Drug (C)      Red: Free Target (R)        Green: Complex (RC)

KON = 10KON  10
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Possible solution:
Assume instantaneous binding to derive approximations that describe clinically 

relevant (slowly changing) processes
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How to derive approximations?
E ti t i th t k C R th l l t th i ht h d idEquations contain the same term konC•R, the only large term on the right-hand side:
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Concentration-time course following IV bolus dose
Black: Total Drug (Ctot = C + RC);        Red: Total Target (Rtot = R + RC).

KON = 0.1
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Concentration-time course following IV bolus dose
Black: Total Drug (Ctot = C + RC);        Red: Total Target (Rtot = R + RC).

KON=10
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One can use “slow” differential equations for Ctot and Rtot

3 quantities (C, R, RC) enter the equations; need to be expressed via Ctot and Rtot

Two relations: Ctot = C + RC; Rtot = R + RC; one more equation is needed.  

Assume that one of the “fast” equations is at quasi-steady-state (QSS). 

A: Free target is at QSS:A: Free target is at QSS:

0+ RCkRCkRkkdR ;0deg =+⋅−−= RCkRCkRkk
dt offonsyn

When kon and koff are large, the first two terms can be neglected, resulting in  on off g , g , g
quasi-equilibrium (QE) conditions:
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B: Drug-target complex is at QSS:
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If we assume that kint << koff, then KD=KSS

Two slow equations  + Assumptions   =   TMDD Approximations 
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RC ⋅

Approximations of the TMDD model

Mager and Krzyzanski [Pharm Res (2005) 22(10): 1589-1596] 

Quasi-Equilibrium (Rapid Binding; QE): DK
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Gibiansky, Gibiansky, Kakkar, Ma [JPP (2008) 35(5):573-91]
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TMDD and Michaelis-Menten Equations
• PK of monoclonal antibodies is often described by the two-compartment model 
with parallel linear and Michaelis-Menten (MM) elimination (Vmax, KM);

• Can we derive MM equations from the TMDD equations?  YES:

• Each of the TMDD approximations can be further simplified to arrive at the 
Michaelis-Menten equations:q

When C >> RC, QSS (QE) is equivalent to

MM Approximation where Vmax(t) = Rtot(t) kint;      KM = KSS (KD);

When C >> RC and Rtot = constant, QSS (QE) is equivalent to

MM Equations where Vmax= Rtot kint = ksyn;     KM = KSS (KD);

When C >> R, IB is equivalent to

MM Equations where Vmax= ksyn;                    KM = kdeg/kon.
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Hierarchy of TMDD Approximations
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Identifiability of Model Parameters

The main reasons to use approximations: 

• Poor identifiability of the full TMDD model parameters given the data;• Poor identifiability of the full TMDD model parameters given the data;

• Long run time of the full TMDD model 

Detailed discussion of identifiability of TMDD model parameters: 

Gibiansky, Gibiansky, Kakkar, Ma: Approximations of the target-mediated y, y, , pp g

drug disposition model and identifiability of model parameters. JPP (2008) 

35(5):573-91.
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Modeling Drugs with TMDD
The analysis of any specific drug should always start with the investigation of 
the underlying biological processes. When the standard assumptions do not 
hold, the equations should be modified to reflect mechanistic understanding of

Practical considerations

hold, the equations should be modified to reflect mechanistic understanding of 
the system.

• All equations are in molar form; 

• AMT and DV should be converted to molar units, or conversion should be 
d i th N t l t ( i F d S t )done in the Nonmem control stream (via Fi and Si parameters);

• Nonmem usually operates in amounts while TMDD system is usually written 
in concentrations; one should be careful not to mix these quantities; 

• It is often difficult to understand what is measured: free or total drug 
concentrations. Assay properties need to be understood before start of modeling. 
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Data
Soluble target:

• Usually, total drug concentration Ctot is available; 

• Sometimes, both free and total drug concentrations are available;

• Sometimes, total target concentration Rtot is available;

• Free target concentration R is rarely available (except at baseline).

Membrane-bound target:

U ll l f d t ti C i il bl• Usually, only free drug concentration C is available 

• Sometimes, target occupancy R/Rtot is available.
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Quantities of interest for PK and PK-PD 
(to compute in the control stream)

• Free drug concentration (C)
• Free target concentration (R)g ( )
• Drug-target complex concentration (RC)
• Total drug concentration (Ctot = C+RC)

T t l t t t ti (R R+RC)• Total target concentration (Rtot = R+RC)
• Target occupancy                                (R/Rtot)
• Ratio of free target to the baseline value (R/R0, R0=ksyn/kdeg)y g
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How to select correct approximation?

Approach 1
Move from the bottom to the top, based on the model fit: p,

• Start with the linear model; 
• Apply linear model with parallel linear and Michaelis-Menten elimination;

A l QSS i i• Apply QSS approximation;
• Increase the complexity while checking the model fit and relative standard  

errors  of the parameter estimates;

• We have not seen any data where the full TMDD model was needed (and/or 
well-estimated););
• Simulations from the full TMDD model indicate that PK of mABs with TMDD 
and clinically relevant PK sampling can always be described by QSS equations. 
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How to select correct approximation?

Useful diagnostic tools:
• Individual plots:Individual plots: 

• increase of elimination (slope on the semi-log-plots) at low concentrations 
and/or at low doses indicates non-linearity; 

• Plots of random effects versus dose: consistent trends indicate that the more• Plots of random effects versus dose: consistent trends indicate that the more 
complex model is needed; 

• Goodness of fit plots stratified by dose: dose-dependent bias indicates that the 
more complex model is needed;more complex model is needed;

• Precision of parameter estimates: large RSE may indicate over-
parameterization;

• Consistence of the results with the model assumptions and biology.  
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How to select correct approximation?

Approach 2Approach 2

Select approximation based on biology (properties of the drug 
and the target):and the target):

• Soluble or membrane target?  
R id l li i ti f th d t t l ?• Rapid or slow elimination of the drug-target complex?
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Target Type: Soluble versus Membrane 
What to expect for soluble low-molecular-weight target 

• Likely accumulation of the drug-target complex; 
• Free and/or total drug concentration is available;
• Total target or drug-target complex concentration is often available;
• The QSS approximation is the expected modelThe QSS approximation is the expected model.

What to expect for membrane target with fast target turn-over
• Total target concentration is likely to be small;
• Only free drug concentration is available;
• Target measurements are rarely available;Target measurements are rarely available; 
• The MM approximation (or equations) is the expected model
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Covariates that may influence PK
Covariate Parameter CommentCovariate Parameter Comment

Weight Clearance, 
volume

Usually, close to allometric scaling; often, CL 
exponent is closer to 1 rather than to 0.75

Age Absorption 
rate

ka may decline with age ~ (AGE/AGEref)-0.5; possible 
explanation: lymphatic transport is passive, and it 
may depend on skin properties and level of physical 

ti it B th h /d li ithactivity. Both may change/decline with age.

Disease state Target concentration (that may depend on disease 
state) may influence the target-mediated clearance. 
H i l l di t tClearance However, in several examples, disease state was seen 
influencing linear rather than target-mediated part of 
clearance. 

Baseline target 
concentration

Li f ti U ll ff t i b d + bi l i lLiver function, 
kidney function Clearance

Usually, no effect is observed + no biological 
reasons to believe that liver, kidney function or 
gender should influence PK of mABs. For smaller 
biologics kidney function may influence clearanceGender
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Covariates that may influence PK
Covariate Parameter Comment

SC 
Formulation

Bioavailability, 
absorption rate

Proteins are very sensitive to changes in 
formulation, even to change in solution strength 
(viscosity, aggregation)

SC injection
dose 

Absorption 
rate,
bioavailability

Absorption may be permeation-limited and 
decrease with increase of volume of drug in 
injection

HAHA HAHA f i i l OfHAHA 
(human-anti-
human 
antibodies) Clearance

HAHA formation may increase clearance. Often, 
HAHA can be measured (due to assay properties) 
only at low drug concentrations, for subjects with 
high clearance thus confounding the censoring ofantibodies)

or ADA (anti-
drug 
antibodies)

Clearance high clearance, thus confounding the censoring of 
observations effect and possible HAHA-induced 
increase of clearance.

antibodies) 
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Case study

Study N Dosing Sampling

Dosing and Sampling Scheme in the Population PK-PD Simulations 

Study N Dosing Sampling

1

6 Single dose, IV, 100 nmol 30 min (only IV), 6, 12,
24 hrs; then 7, 14, 28,
42, 56, 72, 86, 100, 114,

6 Single dose, SC, 300 nmol
6 Single dose, IV, 1000 nmol , , , , , ,

128, 132 days
g , ,

6 Single dose, SC, 3000 nmol

2

100 Three doses at 0, 28 and 56 days,
SC, 1000 nmol

4, 12, 24 hrs; then 7, 28,
42, 56, 63, 70, 77, 91,2 105, 119, 133, 147, 161,
175, 189 days

100 Three doses at 0, 28 and 56 days,
IV, 1000 nmol

Free drug concentrations are measured
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Parameters of the “True” model
Parameter Definition True ValuesParameter Definition True Values
CL                              (L/day) Linear clearance 0.15
Vc (L) Central volume 3.00
Q (L/d ) I l 0 45Q                               (L/day) Inter-compartment clearance 0.45
Vp (L) Peripheral volume 3.0
F1 Bioavailability 0.6

1ka (day-1) Absorption rate 1.0
kon (nmol/L)-1/day Association rate 8.0
koff (day-1) Dissociation rate 8.0
kint (day-1) Internalization rate 0.04
ksyn (nmol/day) Target production rate 1
kdeg (day-1) Degradation rate 0.2
σ2

conc Variances of the exponential 
residual errors 

0.0225
σ2

target 0.04
R0= ksyn/kdeg (nmol/L) Baseline target concentration 5.0
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0 syn deg ( ) g
KSS=(kint+koff)/kon (nmol/L) QSS constant 1.0



Linear model fit
Individual plots the lowest doseIndividual plots, the lowest dose
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Linear model fit 
B i di ti l t th l t dBasic diagnostic plots, the lowest dose
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Linear model fit 
R d ff t d (ETA1 CL ETA2 V ETA3 Q)Random effects versus dose (ETA1: CL, ETA2: VC, ETA3: Q)
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Linear + MM model fit
Individual plots the lowest doseIndividual plots, the lowest dose
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Linear + MM model fit 
Basic diagnostic plots the lowest doseBasic diagnostic plots, the lowest dose
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Linear + MM model fit 
Random effects versus dose (ETA1: CL, ETA2: VC , ETA3: Q , ETA4: KSS)
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QSS - constant Rtot model fit
B i di ti l t th l t dBasic diagnostic plots, the lowest dose
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QSS - constant Rtot model fit
Random effects versus dose 

(ETA1: CL ETA2: V ETA3: Q ETA4: K ETA5: K ETA6: R )(ETA1: CL, ETA2: VC , ETA3: Q , ETA4: KSS , ETA5: KINT, ETA6: RTOT)
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QSS model fit
B i di ti l t th l t dBasic diagnostic plots, the lowest dose
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QSS model fit
Random effects versus dose 

(ETA1: CL ETA2: V ETA3: Q ETA4: KSS ETA5: K ETA6: K ETA7: K )(ETA1: CL, ETA2: VC, ETA3: Q, ETA4: KSS, ETA5: KINT, ETA6: KSYN, ETA7: KDEG)

QuantPharm LLC 44



Parameters of the “true”, linear, MM and QSS models
Parameter Definition True Linear MM QSS QSS PKParameter Definition True 

Value
Linear MM 

Model
QSS  

RTOT
QSS  PK

CL (L/day) Linear clearance 0.15 0.189 0.121 0.163 0.153
Vc (L) Central volume 3.00 2.86 2.96 2.92 2.92
Q (L/day) Inter-compartment 0.45 0.641 0.482 0.454 0.486

clearance
Vp (L) Peripheral volume 3.0 2.03 3.26 2.60 2.99
F1 Bioavailability 0.6 0.569 0.608 0.595 0.593
ka (1/day) Absorption rate 1.0 0.865 0.831 1.3 0.981
k ( l/L) 1/d A i i 8 0kon(nmol/L)-1/day Association rate 8.0
koff (1/day) Dissociation rate 8.0
kint (1/day) Internalization rate 0.04 0.0362 0.0405
ksyn (nmol/L/day) Target production rate 1.0 0.986

kdeg(1/day) Degradation rate 0.2 0.185
σ2

conc Variances of the 
exponential residual errors 

0.0225 0.0413 0.0257 0.0239 0.0223
σ2

target 0.04

R0= ksyn/kdeg (nmol/L) Baseline target 
concentration

5.0 17.3 5.32

KSS=(kint+koff)/kon
(nmol/L)

Steady-state constant 1.0 45.1 3.05 1.13
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Vmax (nmol/L/day) 3.29
MVOF Objective Function -8990 -7007 -8501 -8742 -9001



Summary
• TMDD equations provide useful framework to describe drug and targetTMDD equations provide useful framework to describe drug and target 

concentrations for biologics;
• TMDD equations are based on many implicit and explicit assumptions;     

validity of these assumption should be evaluated on a case by case basis;validity of these assumption should be evaluated on a case by case basis;
• Full TMDD model is rarely identifiable given the clinical data; appropriate 

approximations can (or even should) be used;
TMDD d l i ti id b t id tifi bl d l th t• TMDD model approximations provide robust, identifiable models that 
describe all TMDD features;

• Selection of the most suitable approximation should be guided by biological 
id ti d fi d b th d l di ticonsiderations and confirmed by the model diagnostics;

• Dose-dependencies of diagnostic plots and random effects can be used to 
identify model deficiencies and guide TMDD model development;

• Availability of data following administration of wide range of doses is 
important for unbiased and precise estimation of the TMDD model parameters;

• Use of incorrect approximations may result in biased parameter estimates. 
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Results presented in the talk were obtained in collaboration 
with Ekaterina Gibiansky

Additional references on the original papers will be included 
in the online version of the slidesin the online version of the slides 

THANK YOU FOR YOURTHANK YOU FOR YOUR 
ATTENTION 

Questions?

LGibiansky@quantpharm.com y@q p
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