

Pharmacokinetic (PK) studies in children

Are mainly analysed by nonlinear mixed-effect models (NLMEM) [1,2] as recommended in guideline [3] Approaches based on the Fisher information matrix (M_F) [4] can be used to

optimize their designs and are based on a priori information • PK data in children are often not available and methods as allometry or PBPK are

used to predict 'initial' PK parameters Adaptive designs [5,6], among which two-stage designs, are useful to provide

flexibility and two-stage designs are easier to conduct

Objectives

- 1) To analyse concentration-time data obtained from PBPK simulations in children after oral absorption of a drug X in development
- 2) To develop and evaluate the impact of two-stage designs when children 'true' parameters are different from initial ones

Methods

1) Data and modelling

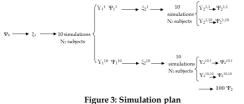
+ Parent PK profiles obtained by simulation in scaling the existing PBPK model in adults to children using the software SIMCYP (version 9) [7]

- + 100 children between 6 months and 18 years old
- + Oral absorption of a dose equal to 0.1 mg/kg
- Simulated data analysed by NLMEM
- (FOCEI algorithm in NONMEM 7.2 [8])
- Dose and parameters per kg

2) Two-stage design

- + Assumption here: same elementary design (ξ) for all subjects
- Notations
- Ψ_0 : initial parameters Ψ^* : true parameters
- ξ_1 : optimized design obtained with parameters Ψ_0 for N1 subjects
- Ψ_1 : estimated parameters from data Y_1
- with design ξ_1 and N_1 subjects
- ξ_2 : optimized design obtained with estimated parameters Ψ_1 for N_2 subjects - Ψ_2 : estimated parameters from data Y_2 , obtained with design ξ_2 for N_2 subjects, and Y_1

M_F for a two-stage design


First stage: ξ_1 is the design which optimizes the following M_F

$$M_F(\Psi_0, N_1\xi) = N_1 M_F(\Psi_0, \xi)$$

Second stage: ξ_2 is the design which optimizes the following M_F using estimated Ψ_1 $M_{F}(\Psi_{1}, N_{1} \xi_{1} + N_{2} \xi) = N_{1}M_{F}(\Psi_{1}, \xi_{1}) + N_{2}M_{F}(\Psi_{1}, \xi)$

3) Simulation study

- ✦ Application to drug X for a trial with N = 60 children
- + 'Initial' parameters Ψ_0 are different from the 'true' parameters Ψ^*
- ✦ Steady-state bid and dose equal to 0.1 mg/kg
- Optimization
- according to the D-optimality criterion with PFIM [9,10] in R
- 5 sampling times among the possible sampling times 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

+ Estimation of Ψ_1 and Ψ_2 with saemix [11] in R

+ Comparison of the relative bias and relative root mean square error (RMSE) for the estimated Ψ_1 (first stage) and the estimated Ψ_2 (second stage)

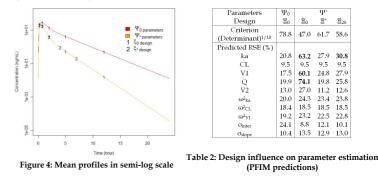
[1] Mentré F, Dubruc C, Thénot JP (2001). J Pharmacokinet Pharmacodyn, 28: 299-319.

- [2] Tod M, Jullien V, Pons G (2008). ClinPharmacokinet, 47: 231-243.
 [3] EMEA (2006). Guideline on the role of pharmacokinetics in the development of medicinal products in [4] Mentré F, Mallet A, Baccar D (1997). Biometrika, 84: 429-442.

Metab Toxicol, 5: 211-223.

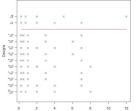
[5] Foo LK, Duffull S (2012). Pharmaceutical Research, 29: 1530-1543

[6] Zamuner S, Di Iorio VL, Nyberg J, Gunn RN, Cunningham VJ, Gomeni R and Hooker AC (2010). ClinPharmacol & Ther, 87: 563-571. [7] Jamei M , Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009). Expert Opin Drug 1) PK model and parameters estimated for the parent drug


+ Two-compartment model (five parameters)

Parameters (units)	Estimates (RSE %)	Ψ_0	Ψ*
ka (h ⁻¹)	3.0 (20.0)	3.0	3.0
$CL(Lh^{-1}kg^{-1})$	1.3 (7.5)	1.3	3.4
V1 (Lkg ⁻¹)	2.1 (13.0)	2.1	2.1
$O\left(Lh^{-1}kg^{-1}\right)$	0.91 (8.5)	0.91	0.91
$V2(Lkg^{-1})$	1.3 (7.3)	1.3	1.3
ω^2_{ka}	1.4 (14.5)	1.4	1.4
ω ² CL	0.53 (11.4)	0.53	0.53
$\omega^2 v_1$	1.1 (13.9)	1.1	1.1
COV/CORR(CL ;V1)	0.55 (14.7) / 0.73 (7.1)	0.00	0.00
$\sigma_{\text{inter}} \left(\mu g.L^{-1} \right)$	0.00060 (17.5)	0.13	0.13
(Oslope	0.12 (8.1)	0.12	0.12

Table 1: Population PK parameter values


2) Two-stage design

 Ξ_0 : N = 60 and ξ_0 = 0.25, 0.75, 2, 5, 12 (optimal for Ψ_0) Ξ*: N = 60 and ξ^* = 0.25, 0.75, 2, 4, 7 (optimal for Ψ*) Ξ_{2S} : N₁ = 30 with ξ_0 and N₂ = 30 with ξ^*

• One-stage design Ξ_0 when parameters are different (Ψ^*) shows a loss of iciency. The 'ideal' two-stage design, with $N_1 = N_2 = 30$, allows to partly npensate this loss of information

Simulation study

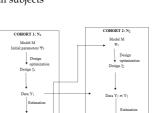
	First stage (Ψ_1)		Second stage (Ψ2)	
Parameters	Relative bias (%)	Relative RMSE (%)	Relative bias (%)	Relative RMSE (%)
ka	24.2	94.0	1.87	43.6
CL	-4.15	9.31	-3.73	6.52
V1	-26.2	40.9	-24.1	32.1
Q	-3.79	12.2	-2.38	10.0
V2	-1.15	13.3	0.627	9.07
ω^{2}_{ks}	21.7	131	-6.44	55.0
ω ² CL	-7.49	18.8	-9.60	16.8
ω^2 V1	18.1	49.5	32.6	66.7
o _{inter}	0.420	13.0	0.420	8.90
Oslope	-2.07	14.9	-2.07	10.2

Figure 5: The ten second-stage designs (ξ_2) optimized from the ten estimated Ψ

Seven designs are different and the other are identical. None of them are identical to ξ^* nor ξ_0

Table 3: Relative bias (%) and RMSE (%) for estimated Ψ_1 and Ψ_2

Relative bias and RMSE are lower for Ψ_2 than for Ψ_1 . The two-stage design improves the estimation

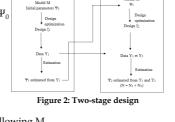

Conclusion

- + Two articles in other contexts [12,13] discussed that two-stage designs could be more efficient than fully adaptive designs
- Two-stage designs are a good alternative for designing PK studies in children
- Perspectives
- To study the impact of the two-stage design with the metabolite
- To investigate the choice of the ratio of the sample sizes between the two stages

References


- [8] Dumont C, Chenel M, Mentré F (2011). Population Approach Group in Europe, Abstr 2160 [www.pagemeeting.org/?abstract=2160]. [9] Bazzoli C, Retout S, Mentré F (2010). Comput Methods Programs Biomed, 98: 55-65.
- [10] www.pfim.biostat.fr [11] Comets E, Lavenu A, Lavielle M (2011). Population Approach Group in Europe, Abstr 1695 [www.pagemeeting.org/default.asp?abstract=2173]. [12] Federov V, Wu Y, Zhang R (2012). *Stat Med*, 31: 217-234.
- [13] Chen TT (1997). Stat Med, 16: 2701-2711.

 optimization Design ξ₁ 	Design 52	_
Data Y1	Data Y1 et Y2	effi con
estimated from Y1	$\begin{array}{c} \text{Estimation} \\ \Psi_2 \text{ estimated from } Y_1 \text{ and } Y_2 \\ (N=N_1+N_2) \end{array}$	<u>3) S</u>
Figure 2: Two	-stage design	



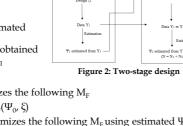

20

Figure 1: Simulated pharmacokinetic profiles

