

Using Population PBPK Modelling to interpret Population PK results exemplified for Levofloxacin in Plasma and Interstitial Fluid

Alexander Solms^{1,2} André Schäftlein^{1,3} Markus Zeitlinger⁴ Charlotte Kloft³ Wilhelm Huisinga²

¹Graduate Research Training Program PharMetrX: Pharmacometrics & Computational Disease Modeling, Martin-Luther-Universitaet Halle-Wittenberg, Freie Universitaet Berlin and Universitaet Potsdam

²Computational Physiology Group, Institute of Mathematics, Universitaet Potsdam, Postdam, Germany ³Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Berlin, Germany ⁴Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria

Objective

Covariate modelling aims at representing the influence of covariates on PK parameters. For example, the levofloxacin plasma data analysis showed that the inclusion of lean body weight (LBW) as a covariate on the peripheral volume decreases the inter-individual variability (IIV) significantly (8%). Is this the expected impact of LBW or is it a surrogate for something else?

Our objective was to study the impact of variations in anatomy & physiology by means of

- ... What are the expectations based on a population (POP) PBPK model?
- And how can this expectations be brought in agreement with observed IIV?

Example:

Expectations from POP PBPK: LBW is a covariate on V_{per} **Results from POP PK analysis:** Inclusion of LBW as covariate on V_{per} resulted in:

Predicted vs. Fitted _

		Mecha	anistic pred. POP PK			
	unit	mean	CV [%]	mean	CV [%]	
V _{cen}	[I]	19.3	9.2	19.2	51.8	
V _{per}	[I]	85.5	12	81.3	21.4	
Q	[l/h]	126.2	21	82.5	29.1	
CL	[l/h]	9.9	23	8.5	26	

Mechanistic Interpretation:

 $V_{\rm cen} \approx$ $(\mathbf{fu}_{\mathbf{p}}/\mathbf{K}_{\mathbf{blo:pla}})$ \sim 0.4 (const.) $~\sim$ 58 \pm CV 10% \sim 0.8 \pm CV 3%

- Mechanistic predictions are derived via lumping [13] the POP PBPK model
- POP PK results are derived via fitting a 2 compartment model to the plasma data with NONMEM[®] 7.12

Whole Body PBPK Model

- Flow-limited **3** (sub-) compartment organ model
- Combinend tissue-to-blood partition coefficient

- **3** routes of (linear) elimination: renal, hepatic, rest
- total blood clearance: **9.5 I/h** (**80%** renal, **5%** hepatic \rightarrow **15%** remaining) [1]
- Ionisation pKa(basic) = 5.7, **pKa(acidic) = 7.9** [2]
- Lipophilicity: $\log P_{oct:wat} = -0.48$ [2]
- Linear protein binding (primary to albumin): $fu_p = 1/(1 + K_a \cdot C_{alb}), K_a = 4.49 \cdot 10^2 M^{-1}$ [1,3]
- Blood-to-plasma partition coefficient: $K_{blo:pla} = 1$ (Ofloxacin [4])

 $V_{\text{per}} \approx \left(\begin{bmatrix} \text{BW} - \text{LBW} \end{bmatrix} \cdot \begin{array}{c} \theta_{\text{adi}} + \begin{array}{c} \text{LBW} \\ \sim 18 \pm \text{CV } 35\% \end{array} \right) \left(\frac{\text{fu}_{\text{p}}/\text{K}_{\text{blo:pla}}}{\sim 58 \pm \text{CV } 10\%} \right) \left(\frac{\text{fu}_{\text{p}}}{\sim 1.7 \text{ (const.)}} \right) \left(\frac{\text{fu}_{\text{p}}}{\sim 0.8 \pm \text{CV } 3\%} \right)$

 $Q \approx$ LBW HR θ_{0} • \sim 0.03 (const.) $~\sim$ 58 \pm CV 10% $~\sim$ 75 \pm CV16%

 $\mathsf{CL} \approx \theta_{\mathsf{ren}} \cdot \mathsf{CLCR} + (\theta_{\mathsf{hep}} + \theta_{\mathsf{rest}}) \cdot$ LBW \sim 0.1 (const.) \sim 79 \pm CV 25% \sim 0.02 (const.) \sim 58 \pm CV 10%

\Rightarrow Distributions of those lumped PK parameters can be derived analytically.

Visual Comparison

What are the expectations based on a POP PBPK model?

Plasma

(**K**_{tis:blo}) model of Rodgers & Rowland 2006 [5] for zwitterions

Anatomy & Physiology

- To build a population PBPK model we introduce IIV only on observable patients characteristics and transform this IIV via proofed relationships to IIV on the PBPK model parameters.
- For the population PBPK model we use the following parametrisation and IIV transformations:
- reference tissue volumes, blood flows, cardiac output ...: ICRP Report 2002 [6]
- ▷ Parameterset stratified by race, sex & age
- ▷ IIV on tissue blood flows & volumes by scaling with lean body weight:

- ► Left: different scaling approaches lean body weight scaling shows good performance reproducing magnitude of IIV (also for other organs, experimental data from [7]) Right: model does not necessarily account for individualised patient variations in organ weight (lack of published data for other organs, kidney data from [8])
- Tissue compositions, e.g. interstitial & cellular volumes, lipid concentrations, ...: Poulin & Theil 2009 [9]
- Serum albumin concentration \rightarrow fraction unbound
- Heart rate (HR) \rightarrow cardiac output
- Creatine clearance (CLCR) \rightarrow renal blood clearance
- Hematocrit + fraction unbound \rightarrow blood-to-plasma partition coefficient (\Rightarrow IIV on $K_{tis:blo}$) The population PBPK model predictions are based on a virtual populations with equal population

• POP PBPK model is able to describe the average plasma kinetic and the variability

Adipose interstitial fluid

Muscle interstitial fluid

- Variability in tissue kinetics larger than expected from IIV included. Possible reasons: Potential IIV in tissue composition impacting the tissue-to-plasma partition coefficients; this would be in line with literature findings [14].
 - \triangleright Observed μD data very sensitive with respect to determination of the recovery rate

How can this expectations be brought in agreement with observed IIV?

• In the mechanistic setting the IIV can be assigned precisely (correlation structure & magnitude) and

characteristics as the underlying patient population taking into account correlations between characteristics.

Dataset

	patient pop		nt pop.	. virtual pop.		
Levofloxacin plasma,		unit	mean	CV [%]	mean	CV[%]
interstitial fluid muscle and	Ν	[-]	15	-	1000	-
adipose concentrations	age	[years]	59	18	adult	-
from 5 clinical trials	weight	[kg]	76	15	76	14
determined with	height	[m]	1.75	4	1.75	4
micro-/retrodialysate	heart rate	[beats/min]	74	15	75	16
principle [10,11,12]	hematocrit	[%]	37	15	39	14
Only one gender (male)	albumin	[mg/l]	35	36	35	30
Only subjects where height	CLCR	[ml/min]	79	25	76	25
and weight is reported	(Range: e.g. C	LCR 46-112	in pati	ent- vs.	43-144	in virtu

processes might cancel out

• If "true" model increases IIV- is this desirable?

Conclusion

As expected, anatomical IIV can only explain part of the IIV. Our approach quantified the contribution of the anatomical IIV. Such information is expected to help understanding to what extent a covariate-relationship involving body size descriptors reflects differences in anatomy and to what extent it might reflect a yet unidentified interaction.

References

[1] DN Fish, AT Chow, The Clinical Pharmacokinetics of Levofloxacin, Clin PK 32 (2), 1997. [2] R Kitzes-Cohen, Quinolones in CNS infections, Quinolone Bull 3, 1987. [3] H Sun, P He, Characterization of Interactions Between Fluoroquinolones and Human Serum Albumin by CE-Frontal Analysis, Chromatographia 68, 2008. [4] T Uchimura et al., Prediction of Human Blood-to-Plasma Drug Concentration Ratio, Biopharm Drug Dispos 31, 2010. [5] T Rodgers, M Rowland, Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions, J Pharm Sci 95, 2006. [6] International Commission on Radiological Protection (ICRP), Basic anatomical and physiological data for use in radiological protection: Reference values, ICRP Publication 89, 2002. [7] de la Grandmaison et al., Organ weight in 684 in adult autopsies: new tables for a Caucasoid population, Forensic Sc Int 119, 2001. [8] JR Nyemgaard, TF Bendtsen, Glomerular Number and Size in Relation to Age, Kidney Weight, and Body Surface in Normal Man, Anatom. Record 232, 1992 [9] P Poulin, P Theil, Development of a Novel Method for Predicting Human Volume of Distribution at Steady-State of Basic Drugs and Comparative Assessment With Existing Methods, 2009. [10] R Bellmann et al., Tissue Pharmacokinetics of Levofloxacin in Human Soft Tissue Infections, Br J Clin Pharmacol 57 (5), 2003. [11] M Zeitlinger et al., Relevance of Soft-Tissue Penetration by Levofloxacin for Target Site Bacterial Killing in Patients with Sepsis, Antimicrobial Agents & Chemotherapy 47, 2003 [12] M Zeitlinger et al., A pilot study testing whether concentrations of levofloxacin in interstitial space fluid of soft tissues may serve as a surrogate for predicting its pharmacokinetics in lung, Int J Antimicrobial Agents 29, 2007. [13] S Pilari, W Huisinga, Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models, J PK PD 37, 2010. [14] DR White et al., The composition of body tissues, Br J Radiology 64, 1991.